Features of generation of quasi-periodic VLF emissions with significant frequency dynamics inside the plasmasphere

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Several basic models of frequency dynamics in quasi-periodic VLF emissions with spectral form repetition periods from 10 to 300 s are considered. In all cases, we are talking about manifestations of cyclotron instability of electron radiation belts thet are well described within the framework of the plasma magnetospheric maser theory based an the averaged self-consistent system of quasi-linear equations for waves and particles. Not too clear spectral elements are characteristic of QP bursts, which are hisses with resonant modulation by geomagnetic pulsations of the Pc 3-4 range mainly near the upper spectral boundary. Analysis of the equilibrium in the radiation belts reveals its possible instability caused by the difference in the pitch-angle dependences of the particle source power and the stationary distribution function. In the nonlinear regime of this instability, QP 2-radiations are formed, usually with a clear frequency increase in individual spectral fragments. The main objective of our work is the study of QP 2 emissions with a significant frequency dynamics. This opens up new possibilities for the diagnostics of space plasma and makes it possible to determine the conditions for occurrence of the frequently observed quasi-periodic emissions with large and very fast dynamics of the frequency spectrum, which can be represented as a product of functions dependent on time and frequency. The study of important details of the excitation of quasi-periodic VLF emissions with significant frequency dynamics inside the plasmasphere has interesting prospects for further research, and the already achieved level of understanding of magnetospheric processes has a real diagnostic potential.

作者简介

P. Bespalov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the RAS; HSE University

编辑信件的主要联系方式.
Email: pbespalov@mail.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

O. Savina

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the RAS; HSE University

Email: onsavina@mail.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

参考

  1. Беспалов П.А., Трахтенгерц В.Ю. О нелинейных колебательных процессах в магнитосфере Земли // Изв. вузов. Радиофизика. Т. 19. № 5–6. С. 801–811. 1976.
  2. Беспалов П.А, Трахтенгерц В.Ю. Циклотронная неустойчивость радиационных поясов Земли. В кн.: Вопросы теории плазмы. Т. 10. М.: Атомиздат. С. 88‒163. 1980.
  3. Беспалов П.А. Самомодуляция излучения плазменного циклотронного “мазера” // Письма в ЖЭТФ. Т. 33. № 4. С. 192‒195. 1981.
  4. Беспалов П.А., Трахтенгерц В.Ю. Альфвеновские мазеры. Горький: ИПФ РАН. 190 с. 1986.
  5. Беспалов П.А., Клейменова Н.Г. Влияние геомагнитных пульсаций на свистовые излучения вблизи плазмопаузы // Геомагнетизм и аэрономия. Т. 29. № 2. С. 177‒191. 1989.
  6. Маннинен Ю., Клейменова Н.Г., Козырева О.В., Беспалов П.А., Райта Т. Квазипериодические ОНЧ излучения, ОНЧ хоры и геомагнитные пульсации Pс4 (событие 3 апреля 2011г.) // Геомагнетизм и аэрономия. Т. 52. №1. С. 82‒92. 2012.
  7. Распопов О.М., Клейменова Н.Г. Возмущения электромагнитного поля Земли. Ч. 3. ОНЧ-излучения. Л.: ЛГУ. 144 с. 1977.
  8. Bespalov P.A. Self-exitation of periodic cyclotron instability regimes in a plasma magnetic trap // Phys.Scripta. V. 1982. № T2B. P. 576‒579. 1982. https://doi.org/10.1088/0031-8949/1982/T2B/044
  9. Bezdeková B., Nemec F., Manninen J., Hospodarsky G.B., Santolik O., Kurth W.S., Hartley D.P. Conjugate observations of quasiperiodic emissions by the Van Allen probes spacecraft and ground-based station Kannuslehto // J. Geophys. Res.Space Physics. V. 125. № 6. ID e27793. 2020. https://doi.org/10.1029/2020JA027793
  10. Engebretson M.J., Posch J.L., Halford A.J., Shelburne G.A., Smith A.J., Spasojevic M., Inan U.S., Arnoldy R.L. Latitudinal and seasonal variations of quasiperiodic and periodic VLF emission in the outer magnetosphere // J. Geophys. Res. V. 105. № A5. ID A05216. 2004. https://doi.org/10.1029/2003JA010335
  11. Hayosh M.F., Nemec F., Santolik O., and Parrot M. Statistical investigation of VLF quasiperiodic emissions measured by the DEMETER spacecraft // J. Geophys. Res. Space Physics. V. 119. P. 8063‒8072. 2014. https://doi.org/10.1002/2013JA019731
  12. Li J., Bortnik J., Ma Q., Li W., Shen X., Nishimura Y. et al. Multipoint observations of quasiperiodic emission intensification and effects on energetic electron precipitation // J. Geophys. Res: - Space Physics. V. 126. ID e28484. 2021. https://doi.org/10.1029/2020JA028484
  13. Manninen J., Kleimenova N.G., Kozyreva O.V., Bespalov P.A., Kozlovsky A.E. Non-typical ground-based quasi-periodic VLF emissions observed at L5.3 under quiet geomagnetic condition at night // J. Atmos. Solar-Terr. Phys. V. 99. P. 123‒128. 2013. https://doi.org/10.1016/j.jastp.2012.05.007
  14. Nemec F., Hospodarsky G., Pickett J.S., Santolik O., Kurth W.S., Kletzing C. Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft // J. Geophys. Res. Space Physics. V. 121. № 8. P. 7647‒7663. 2016a. https://doi.org/10.1002/2016JA022774
  15. Nemec F., Bezdekova B., Manninen J., Parrot M., Santolik O., Hayosh M., Turunen T. Conjugate observations of a remarkable quasiperiodic event by the low-altitude DEMETER spacecraft and ground-based instruments // J. Geophys. Res. – Space Physics. V.121. № 9. P. 8790‒8803. 2016b. https://doi.org/10.1002/2016JA022968
  16. Pasmanik D.L, Demekhov A.G., Hayoš M., Nemec F., Santolik O., Parrot M. Quasiperiodic ELF/VLF emissions detected onboard the DEMETER Spacecraft: theoretical analysis and сomparison whith observations // J. Geophys. Res. Space Physics. V. 124. № 7. P. 275‒284. 2019. https://doi.org/10.1029/2018JA026444
  17. Sato N., Hayasfi K., Kokubun S., Oguti T., Fukunishi H. Relationships between quasi-periodic VLF-emission and geomagnetic pulsationn // J. Atm. Terr. Phys. V. 36. № 9. P. 1515‒1526. 1974. https://doi.org/10.1016/0021-9169(74)90229-3
  18. Sato N., Kokubun S. Interaction between ELF-VLF emissions and geomagnetic pulsations: quasi-periodic ELF-VLF emissions associated with Pc 3-4 magnetic pulsations and their geomagnetic conjugacy. J. Geophys. Res. V.85. № A1. P. 101‒113. 1980. https://doi.org/10.1029/JA085iA01p00101
  19. Sato N., Fukunishi H. Interaction between ELF-VLF-emissions: Classification of quasi-periodic ELF-VLF-emissions based on frequency-time spectra // J. Geophys. Res. V. 86. № A1. P. 19‒29. 1981. https://doi.org/10.1029/JA086iA01p00019
  20. Smith A.J., Carpenter Y., Corcuff Y., Rash J.P.S., Bering E.A. The longitudinal dependence of whistler and chorus characteristics observed on the ground near L=4 // J. Geophys. Res. Space Physics. V. 96. № A1. P. 275‒284. 1991. https://doi.org/10.1029/90JA01077
  21. Smith A.J., Engebretson M.J., Klatt E.M., Inan U.S., Arnoldy R.L., Fukunishi H. Periodic and quasiperiodic ELF/VLF emissions observed by an array of Antarctic stations // J. Geophys. Res. V. 103. № A10. P. 23611‒23622. 1998. https://doi.org/10.1029/98JA01955
  22. Titova E.E., Kozelov B.V., Demekhov A.G., Manninen J., Santolik O., Kletzing C.A., Reevesal G. Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes observations // Geophys. Res. Lett. V. 42. P. 6137‒6145. 2015. https://doi.org/10.1002/2015GL064911
  23. Trakhtengerts V.Y., Rycroft M.J. Whistler and Alfven mode cyclotron masers in space. Cambridge University Press, Cambridge, UK, 2008. https://doi.org/10.1017/CBO9780511536519

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».