Oceanic Crust Formation in the Mid-Atlantic Ridge Segment between Azores and Icelandic Plumes: Results of Geological and Petrogeochemical Studies

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structure of the ocean floor and the composition of basalts and dolerites of the MAR segment between the Maxwell and Charlie Gibbs FZs (North Atlantic) were studied based on the data of the 53rd cruise of the R/V “Akademik Nikolaj Strakhov”. It was found that in this segment, along the spreading axis, areas of greater and lesser magmatic productivity alternate, which correspond to higher and lower bottom relief. In areas of high relief, spreading cells form in the axial zone, and rises of various nature dominate in the ridge zone: from tectonic to volcanic. In areas of low relief, the rift valley consists of deep rift basins, and low ridges are developed on the flanks, separated by wide depressions. Oceanic tholeites N, T and E-MORB are distinguished among the studied volcanites. The first of them are ubiquitous and were melted from mainly depleted mantle (source DM). Basalts and dolerites of E-MORB are found in areas of high relief. Their mantle substrate is formed by a mixture of DM and EM-2 material with the subordinate role of HIMU. T-MORB volcanites are mainly localized on large volcanic rises in the southern part of the studied MAR segment and were melted from a substrate formed by a mixture of DM and HIMU material with the subordinate role of EM-2. Two types of mantle inhomogeneities involved in melting are reconstructed: passive and active. The former are represented by blocks of the transformed continental lithosphere that are similar in composition to the EM-2 mantle source. Active inhomogeneities associate with the uplift near Maxwell FZ of the microplume of the enriched mantle with a composition close to HIMU and with its subaxial flow in the north direction up to the Charlie Gibbs FZ.

Авторлар туралы

S. Skolotnev

Geological Institute RAS

Хат алмасуға жауапты Автор.
Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

A. Peyve

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

S. Sokolov

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

S. Dokashenko

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

V. Dobrolyubov

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

O. Okina

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

B. Ermolaev

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

K. Dobrolyubova

Geological Institute RAS

Email: sg_skol@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., bld. 7

Әдебиет тізімі

  1. Дубинин Е.П., Галушкин Ю.И., Свешников А.А. Модель аккреции океанической коры и ее геодинамические следствия – В кн.: Жизнь Земли. ‒ Под ред. В.А. Садовничего, А.В. Смурова ‒ М.: МГУ, 2010. Вып. 32. С. 53‒83.
  2. Когарко Л.Н. Щелочной магматизм и обогащенные мантийные резервуары. Механизмы возникновения, время появления и глубины формирования // Геохимия. 2006. № 1. С. 5–13.
  3. Пейве А.А. Структурно-вещественные неоднородности, магматизм и геодинамические особенности Атлантического океана ‒ М.: Научный мир, 2002 (Тр. ГИН РАН. Вып. 548). 277 с.
  4. Пейве А.А., Соколов С.Ю., Иваненко А.Н. и др. Аккреция океанической коры в Срединно-Атлантическом хребте (48°–51.5° с.ш.) в ходе “сухого” спрединга // ДАН. Науки о Земле. 2023. Т. 508. № 2. С. 155–163.
  5. Пейве А.А., Соколов С.Ю., Разумовский А.А. и др. Соотношение магматических и тектонических процессов при формировании океанической коры к югу от разлома Чарли Гиббс (Северная Атлантика) // Геотектоника. 2023. № 1. С. 48–74.
  6. Сколотнев С.Г. Природа многообразия вулканитов экваториальной части Срединно-Атлантического хребта // Альманах Пространство и Время (электрон. науч. изд.). 2013. Т. 4. № 1. С. 6‒42. http://e-almanac.space-time.ru/assets/files/Tom
  7. Сколотнев С.Г. Регулярные и региональные вариации состава и строения океанической коры и структуры океанического дна Центральной, Экваториальной и Южной Атлантики ‒ Автореф. дис.… д. г.-м. н. ‒ М.: ГИН РАН, 2015. 59 с.
  8. Сколотнев С.Г. Разномасштабная сегментация медленноспрединговых срединно-океанических хребтов и ее возможные причины (на примере Центральной и Южной Атлантики). ‒ Мат-лы L Тектонич. совещ. “Проблемы тектоники и геодинамики земной коры” ‒ М.: ГЕОС. 2018. Т. 2. С. 189‒193.
  9. Сколотнев С.Г., Добролюбова К.О., Пейве А.А. и др. Строение спрединговых сегментов Срединно-Атлантического хребта между трансформными разломами Архангельского и Богданова (Приэкваториальная Атлантика) // Геотектоника. 2022. № 1. С. 3‒26.
  10. Сколотнев С.Г., Санфилиппо А., Пейве А.А. и др. Геолого-геофизические исследования разломной зоны Чарли Гиббс (Северная Атлантика) // ДАН. Науки о Земле. 2021. Т. 497. № 1. С. 5–9.
  11. Сущевская Н. М., Бонатти Э., Пейве А.А. и др. Гетерогенность рифтового магматизма приэкваториальной провинции Срединно-Атлантического хребта (15° с.ш.‒3° ю.ш.) // Геохимия. 2002. № 1. С. 30‒55.
  12. Сущевская Н.М., Лейченков Г.Л., Беляцкий Б.В., Жилкина А.В. Эволюция плюма Кару-Мод и его влияние на формирование мезозойских магматических провинций в Антарктиде // Геохимия. 2022. № 6. С. 503‒525.
  13. Allegre C.J., Poirier J.-P., Humler E., Hofmann A.W. The chemical composition of the Earth // Ibid. 1995. Vol. 134. P. 515‒544.
  14. Alt J.C., Anderson T.F., Bonnell L. and Muehlenbachs K. Mineralogy, chemistry, and stable isotopic compositions of hydrothermally altered sheeted dikes: ODP Hole 504B, Leg 111. // Proc. ODP, Sci. Results. 1989. Vol. 111. P. 27–40.
  15. Anderson D.L., Schramm K.A. Global hotspot maps – In: Plates, Plumes, and Paradigms. – Eds. G.R. Foulder, J.H. Natland, D.C. Prensall, D.L. Anderson – GSA. Spec. Pap. 2005. Vol. 388. P. 19–29.
  16. Benediktsdyttir B., Hey R., Martinez F. et al. A new kinematic model of the Mid-Atlantic Ridge between 55°55′ N and the Bight Transform Fault for the past 6 Ma // J. Geophys. Res.: Solid Earth. 2016. Vol. 121. № 2. P. 455‒468.
  17. Crane K. The spacing of rift axis highs: Dependence upon diapiric processes in the underlying astenosphere? // EPSL. 1985. Vol. 72. P. 405‒414.
  18. Ellam R.M. Lithospheric thickness as a control on basalt geochemistry // Geology. 1992. Vol. 20. P. 153–156.
  19. Escartin J., Smith D.K., Cann J., and et al. Central role of detachment faults in accretion of slow-spread oceanic lithosphere // Nature. 2008. Vol. 455. P. 790‒794.
  20. Fontignie D., Schilling J.G. Mantle heterogeneities beneath the South Atlantic: A Nd–Sr‒Pb isotope study along the Mid-Atlantic Ridge (3° S‒46 °S) // EPSL. 1996. Vol. 142. P. 109‒121.
  21. GEBCO 30″ Bathymetry Grid. Vers. 20141103. 2014. http://www.gebco.net (Accessed June, 2023).
  22. GEOROC Database (Geochemistry of Rocks of the Oceans and Continents). Vers. 2023-06-01. 2023. https://georoc.eu/georoc/ (Accessed June, 2023).
  23. Grindlay N.R., Fox P.J., Vogt P.R. Morphology and tectonics of the Mid-Atlantic Ridge (25° S–27°30′ S) from sea beam and magnetic data // J. Geophys. Res. 1992. Vol. 97. № B5. P.6983‒7010.
  24. Hanan B.B., Kingsley R.H., Schilling J.G. Pb isotope evidence in the South Atlantic for migrating ridge interactions // Nature. 1986. Vol. 322. P. 137‒144.
  25. Hart S.R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies // EPSL. 1988. Vol. 90. № 3. P. 273‒296.
  26. Hey R., Martinez F., Höskuldsson A., and et al. Multibeam investigation of the active North Atlantic plate boundary reorganization tip // EPSL. 2016. Vol. 435. P. 115–123.
  27. Hoffman A.W. Chemical differentiation of the Earth: The relationships between mantle, continental crust, and oceanic crust // EPSL. 1991. Vol. 90. P. 297‒314.
  28. Hofman A.F. Mantle geochemistry: message from oceanic volcanism // Nature. 1997. Vol. 385. P. 219‒229.
  29. Humphreys E.R., Niu Y. On the composition of ocean island basalts (OIB): the effect of lithospheric thickness variation and mantle metasomatism // Lithos. 2009. Vol. 112. P. 118‒136.
  30. Jackson M.G., Hart S.R., Koppers A.A., and et al. The return of subducted continental crust in Samoan lavas // Nature. 2007. Vol. 448. P. 684‒687.
  31. Jaques A.L., Green D.H. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiite basalts // Contrib. Mineral. Petrol. 1980. Vol. 73. № 3. P. 287‒310.
  32. Klein E.M., Langmuir Ch. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness // J. Geophys. Res. 1987. Vol. 92. № B8. P. 8089‒8115.
  33. Langmuir Ch.H., Bender J.F. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications // EPSL. 1984. Vol. 69. P. 107–127.
  34. Langmuir Ch.H., Bender J.F., Bence A.E. et al. Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge // EPSL. 1977. Vol. 36. P. 133–156.
  35. Lin J., Purdy G.M., Schouten H. et al. C. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge // Nature. 1990. Vol. 344. P. 627–632.
  36. Lorinczi P., Houseman G.A. Lithospheric gravitational instability beneath the Southeast Carpathians // Tectonophysics. 2009. Vol. 474. P. 322‒336.
  37. Macdonald K.C., Fox P.J., Vogt P.R. A new view of the mid-ocean ridge from the behavior of ridge axis discontinuities // Nature. 1988. Vol. 335. P. 217–225.
  38. Martinez F., Hey R., Hoskuldsson A. Reykjanes Ridge evolution: Effects of plate kinematics, small-scale upper mantle convection and a regional mantle gradient // Earth-Sci. Rev. 2020. Vol. 206. P. 1‒24.
  39. Merkouriev S., DeMets C. A high-resolution model for Eurasia-North America plate kinematics since 20 Ma // Geophys. J. Int. 2008. Vol. 173. P. 1064–1083.
  40. Montelli R., Notel G., Dahlen F.A. et al. Catalogue of deep mantle plumes: New results from finite-frequency tomography // Geochem. Geophys. Geosyst. 2006. Vol. 7. № 11. P. 1‒69.
  41. Niu Y., O’Hara M.J. MORB-mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: new perspective on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle // Lithos. 2009. Vol. 112. P. 1‒17.
  42. Okina O., Lyapunov S., Avdosyeva M. et al. An investigation of the reliability of HF acid mixtures in the bomb digestion of silicate rocks for the determination of trace elements by ICP-MS // Geostandards and Geoanalyt. Res. 2016. Vol. 40. P. 583–597.
  43. Okina O.I., Lyapunov S.M., Dubensky A.S. Influence of sample treatment after bomb digestion on determination of trace elements in rock samples by ICP-MS // Microchem. J. 2018. Vol. 140. P. 123–128.
  44. Phillips M.G., Parmentier E.M., Lin J. Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreiting plate boundaries // J. Geophys. Res. 1987. Vol. 92. No. P. 12 823‒12 836.
  45. Regelous M., Niu Ya., Abouchami W. et al. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26° S // Lithos. 2009. Vol. 112. P. 57–72.
  46. Schilling J. Geochemical and isotopic variation along the Mid-Atlantic Ridge axis from 79° N to 0° N – In: The Geology of North America: The Western Atlantic Region. – Eds. P.R. Vogt, B.E. Tucholke, (GSA Mem., Boulder, USA. 1986). P. 137‒153.
  47. Schilling J., Hanan B., McCulli B. and et al. Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd–Sr–Pb isotopic study // J. Geophys. Res. 1994. Vol. 99. № B6. P. 12 005–12 028.
  48. Schilling J.G., Thompson G., Kingsley R., and et al. Hotspot-migrating ridge interaction in the South Atlantic // Nature. 1985. Vol. 313. P. 187‒191.
  49. Schilling J.G., Zajac M., Evants R., and et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73° N // Am. J. Sci. 1983. Vol. 283. P. 510–586.
  50. Skolotnev S.G., Sanfilippo A., Peyve A.A., and et al. Seafloor spreading and tectonics at the Charlie Gibbs transform system (52°‒53° N, Mid-Atlantic Ridge): Preliminary results from R/V “Akademik Nikolaj Strakhov” expedition S50 // Ofioliti. 2021. Vol. 46. № 1. P. 83‒101.
  51. Sleep N.H. Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes? // J. Geophys. Res. 1984. Vol. 89. № B12. P. 10 029‒ 10 041.
  52. Sobolev A.V., Hofmann A.W., Kuzmin D.V. et al. The amount of recycled mantle-derived melts // Science. 2007. Vol. 316. P. 412‒417.
  53. Sun S.S., McDonough W.F. Chemical and isotopic systematics in ocean basalt: Imlication for mantle composition and processes – In: Magmatism in the Ocean Basins – Eds. A.D. Saunders, M.J. Norry, (Geol. Soc. Spec. Publ. USA. 1989. Vol .42), P. 313‒345.
  54. Sun S.S., Nesbit R.W., Sharaskin A.Ya. Geochemical characteristics of mid-ocean ridge basalts // EPSL. 1979. Vol. 96. P. 119‒133.
  55. Thompson R.N. Phase-equilibria constraints on the genesis and magmatic evolution of oceanic basalts // Earth-Sci. Rev. 1987. Vol. 24. P. 161‒210.
  56. Weaver B.L., Wood D.A., Tarney J. et al. Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha // Geol. Soc. Spec. Publ. 1987. № 30. P. 253‒267.
  57. White W.M. Ocean island basalts and mantle plumes: The geochemical perspective // Ann. Rev. Earth Planet. Sci. 2010. Vol. 38. P. 133‒160.
  58. White W., Schilling J.G. The nature and origin of geochemical variation in the Mid-Atlantic Ridge basalts from the central North Atlantic // Geochim. Cosmochim. Acta. 1978. Vol. 42. P. 1501‒1516.
  59. Whitmarsh R.B., Ginzburg A., Searle R.C. The structure and origin of the Azores-Biscay Rise, North-east Atlantic Ocean // J. Geophys. Res. 1982. Vol. 70. P. 79–107.
  60. Yu D., Fontignie D., Schilling J.G. Mantle-plume interactions in the Central North Atlantic: Nd-isotope study of Mid-Atlantic Ridge basalts from 30° N to 50° N // EPSL. 1997. Vol. 146. P. 259‒272.
  61. Zindler A., Jagoutz E., Goldstein S. Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective // Nature. 1982. Vol. 298. P. 519‒523.

© С.Г. Сколотнев, А.А. Пейве, С.Ю. Соколов, С.А. Докашенко, В.Н. Добролюбов, О.И. Окина, Б.В. Ермолаев, К.О. Добролюбова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».