Structural Connection of the Chukchi Borderland and the Chukchi Sea Shelf: 3D Geophysical Modelling of the Earth Crust
- Authors: Piskarev A.L.1,2, Kireev A.A.1, Ovanesyan G.I.1, Poselov V.A.1, Savin V.A.2, Smirnov O.E.1, Tabyrtsa S.N.1,2
-
Affiliations:
- Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean
- Saint Petersburg State University
- Issue: No 5 (2024)
- Pages: 28-45
- Section: Articles
- URL: https://journal-vniispk.ru/0016-853X/article/view/272869
- DOI: https://doi.org/10.31857/S0016853X24050024
- EDN: https://elibrary.ru/EFXCYW
- ID: 272869
Cite item
Abstract
A 3D model of the crustal structure of the region, which includes the Chukchi Borderland with the adjacent ocean and the Chukotka‒Alaska Shelf, has been compiled and calculated. The peculiarity of the crustal structure is the three-sided isolation of the Chukchi Borderland and presence of a transitional area from the south connecting the Chukchi Borderland with the Chukotka‒Alaska Shelf. The connection between the Chukchi Borderland and the Wrangel Rise of the Chukchi Shelf is traced through the North Chukchi Rise located between the North Chukchi Trough and the Hanna Trough. A clockwise rotation of the Chukchi Borderland began in the Early Cretaceous, because basalts at the bottom of the sedimentary strata sections along the eastern and southern boundaries of the Chukchi Basin have a reversed magnetization, i.e., their outpouring occurred before the beginning of the Cretaceous superchron, earlier than 121 Ma. Near the upper boundary of the Neocomian, there was a large-scale shear displacement of crustal blocks along the eastern boundary of the Chukchi Rise, which had a thrust pattern before that. The 3D model demonstrates that the Chukchi Borderland and the Chukchi Basin are the natural components of the continental margin, as they have a strong geological connection with the continental masses of the Chukchi Shelf.
Full Text

About the authors
A. L. Piskarev
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean; Saint Petersburg State University
Author for correspondence.
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg
A. A. Kireev
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg
G. I. Ovanesyan
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg
V. A. Poselov
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg
V. A. Savin
Saint Petersburg State University
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg
O. E. Smirnov
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg
S. N. Tabyrtsa
Gramberg All-Russia Research Institute of Geology and Mineral Resources of the World Ocean; Saint Petersburg State University
Email: apiskarev@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg
References
- Арктический бассейн (геология и морфология). – Под ред. В.Д. Каминского – СПб: ВНИИОкеангеология, 2017. 291 с.
- Глебовский В. Ю., Зайончек А. В., Каминский В. Д., Мащенков С. П. Цифровые базы данных и карты потенциальных полей Северного Ледовитого океана // Российская Арктика: геологическая история, минерагения, геоэкология. — СПб: ВНИИОкеангеология, 2002. С. 134–141.
- Диденко А.Н., А.И. Ханчук. Смена геодинамических обстановок в зоне перехода Тихий океан – Евразия в конце раннего мела // ДАН. 2019. Т. 487. № 4. С. 405–408.
- Остров Врангеля: геологическое строение, минерагения, геоэкология. – Под ред. М.К. Косько, В.И. Ушакова – СПб, ВНИИОкеангеология, 2003. 137 с.
- Пискарев А.Л. Петрофизические модели земной коры Северного Ледовитого океана. ‒ Под ред. Ю.Е. Погребицкого. ‒ СПб.: ВНИИОкеангеология, 2004. 134 c. (Тр.ВНИИГА.Т.203).
- Поселов В.А., Буценко В.В., Каминский В.Д., Сакулина Т.С. Поднятие Менделеева (Северный Ледовитый океан) как геологическое продолжение континентальной окраины Восточной Сибири // ДАН. 2012. Т. 443. № 2. С. 232‒235.
- Черных А. А., Яковенко И. В., Каминский В. Д., Глебовский В. Ю., Корнева М. С., Башев И. А. Тектоническая схема Амеразийского бассейна Северного Ледовитого океана // ДАН. Науки о Земле. 2023. T. 510. № 2. С 134‒141. doi: 10.31857/S2686739723600042
- Шипилов Э.В., Лобковский Л.И. О субмеридиональной зоне сдвига в структуре континентальной окраины Чукотского моря и механизме раскрытия Канадского океанического бассейна // ДАН. 2014. Т. 455. № 1. С. 67–71.
- Andersen O. B., Knudsen P. The DTU17 Global marine gravity field: First validation results. ‒ In: Fiducial Reference Measurements for Altimetry. ‒ Ed.by S.P. Mertikas, R. Pail (Springer. NY. USA. 2020), P. 83‒87. doi: 10.1007/1345_2019_65
- Arrigoni V. Origin and evolution of the Chukchi borderland. ‒ PhD Thesis (Texas A&M Univ. USA. 2008), 74 p.
- Bruvoll V., Kristoffersen Y., Coakley B.J., HopperJ.R., Planke S., Kandilarov A. The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean // Tectonophysics. 2012. Vol. 514-517. P. 123‒145.
- Childers V.A., McAdoo D.C., Brozena J.M., and Laxon S.W. New gravity data in the Arctic Ocean: Comparison of airborne and ERS gravity // J. Geophys. Res. 2001. Vol. 106. No. B5. P. 8871– 8886.
- Embry A., Beauchamp B., Dewing K., Dixon J. Episodic tectonics in the Phanerozoic succession of the Canadian High Arctic and the “10-million year flood”. ‒ In: Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens. ‒ Ed.by K. Piepjohn, J.V. Strauss, L. Reinhardt, W.C. McClelland, (GSA Spec. Pap. 2018. Vol.541), P. 1–18.
- Geologic Structures of the Arctic Basin. ‒ Ed.by A. Piskarev, V. Poselov, V. Kaminsky, (Springer, NY. USA. 2019), 375 p.
- Grantz A., Patrick E., Hart P., Vicki E., Childers A. Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. ‒ (Geol. Soc., London, Mem. 2011. Vol. 35. P. 771‒799. doi: 10.1144/M35.50
- Grantz A., Clark L. D., Phillips R.L., Srivastava S.P., Blome C.D. et al. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean // GSA Bull. 1998. Vol. 110. Is.6. P. 801‒820.
- Grantz A., Hart P.E., Childers V.A. Tectonic History of the Amerasia Basin, Arctic Ocean. ‒ AGU Fall Meet. December 2007, T11E. 02G.
- Grantz A., Johnson G.L., Sweeney J.F.G., May S.D., Hart P.E. Geology of the Arctic continental margin of Alaska. ‒ In: The Arctic Ocean Region: Boulder, CO. ‒ Ed.by A. Grantz, L. Johnson, J.F. Sweeney, (GSA Spec Pap. 1990), P. 257‒288.
- Hegewald A. The Chukchi Region‒Arctic Ocean ‒ Tectonic and Sedimentary Evolution. ‒ PhD Diss. (Univ. Jena, Germany. 2012), 107 p.
- Houseknecht D. W. Colville foreland basin and Arctic Alaska prograded margin tectono-sedimentary elements, northern Alaska and southwestern Canada Basin. ‒ In: Sedimentary Successions of the Arctic Region and Their Hydrocarbon Prospectivity. ‒ Ed.by S.S. Drachev, H. Brekke, E. Henriksen, T. Moore, (Geol. Soc., London, Mem. 2018. Vol. 57), P. 1‒19. doi: 10.1144/M57-2018-65
- Ilhan I., Coakley B.J., Houseknecht D.W. Meso–Cenozoic evolution of the Chukchi Shelf and North Chukchi Basin, Arctic Ocean // Marin. Petrol. Geol. 2018. VoL. 95. P. 100‒109. doi: 10.1016/j.marpetgeo.2018.04.014
- Kashubin S.N., Petrov O.V., Artemieva I.M. et al. Crustal structure of the Mendeleev Rise and the Chukchi Plateau (Arctic Ocean) along the Russian wide-angle and multichannel seismic reflection experiment “Arctic-2012” // J. Geodynam. 2018. Vol. 119. P. 107‒122.
- Mair J.A., Forsyth D.A. Crustal structures of the Canada Basin near Alaska, the Lomonosov Ridge and adjoining basins near the North Pole // Tectonophysics. 1982. Vol.89. P. 239‒253.
- Mayer Larry A., Andrew A. Armstrong. Icebreaker Healy cruise report. ‒ (Univ. of New Hampshire, September 20, 2008), 179 р.
- Mukasa S. B., Andronikov A., Brumley K., Mayer L.A., Armstrong A. Basalts from the Chukchi Borderland: 40Ar/39Ar аges and geochemistry of submarine intraplate lavas dredged from the western Arctic Ocean // JGR Solid Earth. Vol. 125. Is.7. July 2020. doi: 10.1029/2019JB017604
- O’Brien T. M., Miller E.L., Benowits J.P., Meisling K.E., Dumitru T.A. Dredge samples from the Chukchi borderland: implications for paleogeographic reconstruction and tectonic evolution of the Amerasia Basin of the Arctic // Am. J. Sci. (AJS). 2016. Vol. 316. P. 873‒924.
- Ogg J. Geomagnetic polarity time scale. ‒ In: Geologic Time Scale, (Elsevier. NY. USA. 2020), P.159‒192.
- Pease V., Drachev S., Stephenson R., Zhang X. Arctic lithosphere — A review // Tectonophysics. 2014. Vol. 628. P.1‒25.
- Rowley D.G., Lottes A., Ziegler A.M. North America-Greenland Eurasia relative motions: Implications for Circum-Arctic tectonic reconstructions // Am. Assoc. Petrol. Geol. Bull. 1985. Vol. 69.
- Sweeney J.F., Weber J.R., Blasco S.M. Continental Ridges in the Arctic Ocean: LOREX constraints // Tectonophysics. 1982. Vol. 89. No. 1-3. P. 217‒237.
- Tchernychev M. Yu., Makris J. Fast calculations of gravity and magnetic anomalies based on 2D and 3D grid approach, (Proc. 66th SEG Meeting. Denver, 1996. Abstr.), P. 1136–1138.
- Vogt P.R., Taylor P.T., Kovacs L.C., Johnson G.L. The Canada Basin: Aeromagnetic constrains on structure and evolution // Tectonophysics. 1982. Vol. 89. P. 295‒336.
- Geosoft Oasis Montaj, www.geosoft.com/products/oasis-montaj, (Accessed 03.07.2018).
Supplementary files
