Tectonic Origin of the Belomorian Mobile Belt and Belomorian Eclogites (N‒E Baltic Shield)
- Authors: Shchipansky A.A.1
-
Affiliations:
- Geological Institute, Russian Academy of Sciences
- Issue: No 4 (2025)
- Pages: 3-28
- Section: Articles
- URL: https://journal-vniispk.ru/0016-853X/article/view/308920
- DOI: https://doi.org/10.31857/S0016853X25040016
- EDN: https://elibrary.ru/snpwgu
- ID: 308920
Cite item
Abstract
Belomorian mobile belt is defined as the belt of high-grade metamorphic rocks which is made up predominantly of the Meso- to Neoarchean tonalite-trondhjemite-granodiorite (TTG) gneisses in which sealed numerous blocks of strongly retrogressed eclogites. It is fringed with the Karelian granite-greenstone craton (i), and the hinterland of the late Paleoproterozoic Lapland-Kola compressed orogen (ii), being its foreland. It is long been assumed that the origin of Belomorian eclogites was related to a subduction of the hypothetical Lapland-Kola oceanic crust followed by a collision of Lapland-Kola and Karelian lithospheric plates at ca.1.9 Ga. It is shown that there is no any evidence for subduction geodynamics of this time. Therefore, the origin of the Belomorian mobile belt was triggered by a far-field stress and as a result an emergence of the fore-bulge during the development of the Lapland-Kola compressional orogeny and related to flexural bending of the Archean lithosphere, which led to its shortening by ~10%, culminated both in significant enhancement of a rate of dislocation creep in its crustal level and compaction-derived fluid activity. The maximum tectonic pressure had been expressed in the area of the North-Belomorian syntax where the overwhelming majority of eclogite blocks sealed in the Meso- to Neoarchean TTG gneisses occurred.
About the authors
A. A. Shchipansky
Geological Institute, Russian Academy of Sciences
Author for correspondence.
Email: shchipansky@mail.ru
bld. 7, Pyzhevskii per., 119017 Moscow, Russia
References
- Арзамасцев A.A., Егорова С.В. Ерофеева К.Г., Самсонов А.В., Степанова А.В., Скуфьин П.К., Чащин В.В., Веселовский Р.В. Палеопротерозойские (2.51−2.40 млрд лет) провинции северо-восточной части Фенноскандии: геохимия вулканитов и корреляция с интрузивными комплексами // Стратиграфия и геологическая корреляция. 2020. Т. 28. № 6. С. 37−66. doi: 10.31857/S0869592X20060034.
- Арзамасцев A.A., Степанова А.В., Самсонов А.В., Скуфьин П.К., Сальникова Е.Б., Ларионов А.Н., Ларионова Ю.О., Егорова С.В., Ерофеева К.Г. Базитовый магматизм северо-восточной части Фенноскандии (2.06−1.86 млрд лет): геохимия вулканитов и корреляция с дайковыми комплексами // Стратиграфия и геологическая корреляция. 2020. Т. 28. № 1. С. 3−40. doi: 10.31857/S0869592X20010020.
- Астафьев Б.Ю., Воиновa О.А. Климовский метасоматический комплекс Беломорского подвижного комплекса: состав, возраст, геологическая позиция // Геотектоника. 2020. № 1. С. 23−40. https://doi.org/10.1134/S0016852120010033
- Балаганский В.В., Глазнев В.Н., Осипенко Л.Г. Раннепротерозойская эволюция северо-востока Балтийского щита: террейновый анализ // Геотектоника. 1998. № 2. С. 16−28.
- Бушмин С.А. Минеральные фации метасоматитов, связанных с региональным метаморфизмом // Зап. Всерос. минерал. общ-ва. 1987. Вып. 5. С. 58‒601.
- Володичев О.И. Беломорский комплекс Карелии (геология и петрология). − Л.: Наука. 1990. 245 с.
- Володичев О.И. Палеопротерозойские эклогиты Беломорского подвижного пояса (об эклогитизации габбро в дайке комплекса лерцолит-габброноритов) / Ред. О.И. Володичев, О.И. Парфенова, Т.И. Кузенко // Геология и полезные ископаемые Карелии. 2008. Вып. 11. С. 37–62.
- Володичев О.И., Слабунов А.И., Бибикова Е.В., Конилов А.Н. Архейские эклогиты Беломорского подвижного пояса (Балтийский щит) // Петрология. 2004. Т. 12. № 6. С. 609–631.
- Глебовицкий В.А., Миллер Ю.В., Другова Г.М., Милькевич Р.И., Вревский А.Б. Структура и метаморфизм Беломорско-Лапландской коллизионной зоны // Геотектоника. 1996. № 1. C. 63–75.
- Глебовицкий В.А., Бушмин С.А. Послемигматитовый метасоматоз. − Л.: Наука, 1983. 215 с.
- Глебовицкий В.А., Седова И.С. Метаморфизм Беломорского мобильного пояса. ‒ В кн.: Ранний докембрий Балтийского щита. ‒ Под ред. В.А. Глебовицкого. ‒ СПб.: Наука, 2005. С. 251–257.
- Коржинский Д.С. Физико-химические основы анализа парагенезисов минералов. − М.: АН СССР, 1957. 184 с.
- Коржинский Д.С. Теоретические основы анализа парагенезисов минералов. − М.: Наука, 1973. 288 с.
- Куликов В.С., Светов С.А., Слабунов А.И., Куликова В.В., Полин А.К., Голубев А.И., Горьковец В.Я., Иващенко В.И., Гоголев М.А. Геологическая карта юго-восточной Фенноскандии масштаба 1:750 000: новые подходы к составлению. − КарНЦ РАН, 2017. С. 3–41. (Тр. КарНЦ РАН. Вып. 2). doi: 10.17076/geo444
- Максимов О.А., Балаганский В.В., Слабунов А.И., Ларионов А.Н. Два этапа высокобарного метаморфизма в раннедокембрийских эклогитах (район Гридино Беломорской провинции Фенноскандинавского щита): петрология и геохронология // Петрология. 2022. № 2. С. 140−165. doi: 10.1134/S0869591122020047.
- Миллер Ю.В. Необычные пликативные формы в покровно-складчатой структуре Беломорского подвижного пояса // Геотектоника. 1997. № 4. С. 80‒89.
- Минц М.В., Глазнев В.Н., Конилов А.Н., Кунина Н.М., Никитичев А.П., Раевский А.Б., Седых Ю.Н., Ступак В.М., Фонарев В.И. Ранний докембрий северо-востока Балтийского щита: палеогеодинамика, строение и эволюцмя континентальной коры. − М: Научный мир, 1996. 287 с.
- Минц М.В., Сулейманов А.К., Бабаянц П.С., Булщусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А., Конилов А.Н., Каулина Е.В., Натапов Л.М., Пиип В.Б, Ступак В.М., Заможняя Н.Г. Глубинная структура, эволюция и полезные ископаемые раннедокемрийского фундамента Восточно-Европейской платоформы: Интерпретация данных по геотраверсам 1-EВ, 4В и Татсейс. ‒ М.: Геокарт, 2010. 804 с.
- Мудрук С.В., Балаганский В.В., Горбунов И.А., Раевский А.Б. Альпинотипная тектоника в палеопротерозойском Лапладско-Кольском орогене // Геотектоника. 2013. № 4. С. 13‒30. https://doi.org/10.1134/S0016852113040055
- Перчук Л.Л. Пироксеновый барометр и “пироксеновые геотермы” // Докл. АН СССР. 1977б. Т. 233. № 6. С. 1196–1200.
- Смолькин В.Ф. Ранний протерозой. ‒ В кн.: Ранний докембрий Балтийского щита. ‒ Под ред. В.А. Глебовицкого. ‒ СПб.: Наука, 2005. С. 59–123.
- Слабунов А.И., Балаганский В.В., Щипанский А.А. Мезоархей-палеопротерозойская эволюция земной коры Беломорской провинции Фенноскандинавского щита и тектоническая позиция эклогитов // Геология и геофизика. 2021. Т. 62. № 5. С. 648—675. doi: 10.15372/GiG2021116.
- Щипанский А.А. Субдукционная геодинамика в архее и формирование алмазоносных литосферных килей и ранней континентальной коры кратонов // Геотектоника. 2012. № 2. С. 42‒64. https://doi.org/10.1134/S0016852112020057
- Щипанский А.А., Слабунов А.И. Природа “свекофеннских” цирконов Беломорского подвижного пояса Балтийского щита и некоторые геодинамические следствия // Геохимия. 2015. Т. 53. № 10. С. 888−912. https://doi.org/10.1134/S0016702915100043
- Щипанский А.А., Ходоревская Л.И., Конилов А.Н., Слабунов А.И. Эклогиты Беломорского пояса (Кольский полуостров): геология и петрология // Геология и геофизика. 2012. Т. 53. № 1. С. 3‒29. https://doi.org/10.1016/j.rgg.2011.12.001
- Щипанский А.А., Ходоревская Л.И., Слабунов А.И. Геохимия и изотопный возраст эклогитов Беломорского пояса (Кольский полуостров): свидетельства о субдуцировавшей архейской океанической коре // Геология и геофизика. 2012. Т. 53. № 3. С. 341‒364. https://doi.org/10.1016/j.rgg.2012.02.004
- Allègre C.J., Turcotte D.L. Implications of a two-component marble-cake mantle // Nature. 1986. Vol. 323. P. 123‒127.
- Artemieva I.M. Global 1 × 1 thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution // Tectonophysics. 2006. Vol. 416. P. 245–277. doi: 10.1016/j.tecto.2005.11.022.
- Artemieva I.M. Dynamic topography of the East European Craton: Shedding light upon the lithospheric structure, composition and mantle dynamics // Global and Planetary Change 2007. Vol. 8. P. 411–434. doi: 10.1016/j.gloplacha.2007.02.013.
- Artemieva I.M., Mooney W.D. Thermal structure and evolution of Precambrian lithosphere: A global study // Geophys. Res. 2001. Vol. 106. P. 16387–16414.
- Balagansky V.V., Maksimov O.A., Gorbunov I.A., Gorbunova T.V., Mudruk S.V., Sidorov M.Yu., Sibelev O.S., Slabunov A.I. Early Precambrian eclogites in the Belomorian Province, eastern Fennoscandian Shield // Precambrian Research. 2024. Vol. 413. 107579. https://doi.org/10.1016/j.precamres.2024.107579
- Balagansky V., Shchipansky A., Slabunov A.I., Gorbunov I.A., Mudruk S.V., Sidorov M.Yu., Egorova S., Voloshin A. Archean Kuru-Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: crustal architecture, timing and tectonic implications // Int. Geol. Rev. 2015. Vol. 57. P. 1543–1565. https://doi.org/10.1080/ 00206814.2014.958578
- Berthelsen A., Marker M. Tectonics of the Kola collision suture and adjacent Archaean and Early Proterozoic terrains in the northeastern region of the Baltic Shield // Tectonophysics. 1986. Vol. 126. P. 31–55.
- Berzin R.G., Yurov Yu.G., Pavlenkova N.I. CDP and DSS data along the Uchta–Kem profile (the Baltic Shield) // Tectonophysis. 2002. Vol. 335. P. 187–200.
- Bibikova E.V., Skiöld T., Bogdanova S.V., Gorbatchev R., Slabunov A. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield // Precambrian Research. 2001. Vol. 105. P. 315‒330. https://doi.org/10.1016/S0301-9268(00)00117-0
- Bidgood A.K., Parsons A.J., Roberts N.M.W., Waters D., Tapster S., Gopon P. The geodynamic significance of continental UHP exhumation: New constraints from the Tso Morari Complex, NW Himalaya // Tectonics. 2024. Vol. 43. https://doi.org/10.1029/2023TC007976
- Brown C.D. Thermal controls on flexure of underthrust continental lithosphere // Geophys. J. Int. 2001. Vol. 146. P. 813–826.
- Brown C.D., Phillips R.J. Crust–mantle decoupling by flexure of continental lithosphere // J. Geophys. Res. 2000. Vol. 105. P. 13221–13237.
- Brown M. Metamorphic patterns in orogenic systems and the geological record. ‒ In: Earth Accretionary Systems in Space and Time. ‒ Ed. by P.A. Cawood, A. Kröner, (Geol. Soc., London. Spec. Publ. 2009. Vol. 318). P. 37–74. doi: 10.1144/SP318.2.
- Brown M., Johnson T. Metamorphism and the evolution of subduction on Earth // Am. Mineral. 2019. Vol. 104. P. 1065–1082. doi: 10.2138/am-2019-6956.
- Buntin S., Artemieva I. M., Malehmir A., Thybo H., Malinowski M., Högdahl K., Janik T., Buske S. Long-lived Paleoproterozoic eclogitic lower crust // Nature Communications. 2021. https://doi.org/10.1038/s41467-021-26878-5
- Burg J.-P., Davy P., Martinod J. Shortening of analogue models of the continental lithosphere: New hypothesis for the formation of the Tibetan Plateau // Tectonics. 1994. Vol. 13. No. 2. P. 475–483.
- Burg J.-P., Podladchikov Y.Y. Lithospheric scale folding: Numerical modelling and application to the Himalayan syntaxes // Int. J. Earth Sci. 1999. Vol. 88. P. 190‒200.
- Burov E.B. The equivalent elastic thickness (Te), seismicity and the long-term rheology of continental lithosphere: Time to burn-out “crème brûlée”? Insights from large-scale geo- dynamic modeling // Tectonophysics. 2010. Vol. 484. P. 4–26. doi: 10.1016/j.tecto.2009.06.013.
- Burov E.B., Diament M. The effective elastic thickness of (Te) continental lithosphere. What does it really means? // J. Geophys. Res. 1995. Vol. 100. No. B3. P. 3905–3927. Doi: 10.1029/ 94JB02770.
- Cawood P.A., Kröner A., Collins W.A., Kusky T., Mooney W., Windley B. Accretionary orogens through Earth history. ‒ In: Earth Accretionary Systems in Space and Time. ‒ Ed. by P.A. Cawood, A. Kröner, (Geol.Soc., London. Spec. Publ. 2009. Vol. 318). P. 1–36. doi: 10.1144/SP318.1.
- Charibnejan P., Rosenberg C.L., Agard P., Kanahian A., Omprani J. Structural and metamorphic evolution of the southern Sanandaj-Sirjan zone, southern Iran // Int. J. Earth Sci. 2002. doi: 10.1007/500531-022-02255-5.
- Chua X., Aguea J.J, Podladchikov Y.Y.,Tiana M. Ultrafast eclogite formation via melting-induced overpressure // Earth Planet. Sci. Lett. 2007. Vol. 479. P. 1‒17. doi: 10.1016/j.epsl.2017.09.007.
- Connolly J.A.D., Podladchikov Y.Y. Fluid flow in compressive tectonic settings: Implications for midcrustal seismic reflectors and downward fluid migration // J. Geophys. Res. Solid Earth. 2004. Vol. 109. B04201. doi: 10.1029/2003JB002822
- Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., de Jong K., Guise P., Bogdanova S., Gorbatschev R., Bridgwater D. Ion microprobe U‒Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield // Precambrian Research. 2001. Vol. 105. P. 289–314.
- Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. ‒ In: European Lithosphere Dynamics. ‒ Ed. by D. G. Gee, R. A. Stephenson, (Geol. Soc., London. Memoirs. 2006. V. 32. P. 561–578.
- DeCelles G., Giles K.N. Foreland basin systems // Basin Research. 1996. Vol. 8. P. 105–123. doi: 10.1046/j.1355-2117.1996.01491.x.
- Downes H., Peltonen P., Manttari I., Sharkov E.V. Proterozoic zircon ages from lower crustal granulite xenoliths, Kola Peninsula, Russia: Evidence for crustal growth and reworking // J. Geol. Soc. 2002. Vol. 159. P. 485–488.
- England P.C., Thompson A.B. Pressure–temperature–time paths of regional metamorphism. I. Heat transfer during evolution of regions of thickened continental crust // J. Petrol. 1984. Vol. 25. P. 894–928.
- Eshaghi E., Smith R.S., Ayer J. Petro-physical characterization (i.e. density and magnetic susceptibility) of major rock units within the Abitibi Greenstone Belt. ‒ (Laurentian Univ. Mineral Explor. Res. Centre. 2019). Publ. no. MERC-ME-2019-144.
- Gaál G., Berthelsen A., Gorbatschev R., Kesola R., Lehtonen M., Marker M., Raase P. Structure and composition of the Precambrian crust along the POLAR profile in the northern Baltic Shield // Tectonophysics. 1989. Vol. 162. P. 1–25.
- Griffin W.L., O’Reilly S.Y., Afonso J.C., Begg G.C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications // J. Petrology. 2009. Vol. 50. No. 7. P. 1185−1204. doi: 10.1093/petrology/egn033.
- Hanski E., Huhma H. Central Lapland greenstone belt. ‒ In: Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. ‒ Ed. by M. Lehtinen, P.A. Nurmi, O.T. Rämö, (Elsevier, Amsterdam, the Netherland. 2005). P. 139–194.
- Herzberg C., Asimow P. Petrology of some oceanic island basalts: RIMELT2.XLS software for primary magma calculation // Geochem., Geophys., Geosyst. (G3). 2008. Vol. 9. Q09001. doi: 10.1029/2008GC002057.
- Herzberg C., Asimow P.D., Arndt N., Niu Y., Lesher M., Fitton J.G., Cheadle M.J., Saunders A.D. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites // Geochem., Geophys., Geosyst. (G3). 2007. Vol. 8. Q02. doi: 10.1029/2006GC001390.
- Herzberg C., Condie K., Korenaga J. Thermal history of the Earth and its petrological expression // Earth Planet. Sci. Lett. 2010. Vol. 292. P. 79–88.
- Hirschmann M.M., Kogiso T., Baker M.B., Stolper E.M. Alkalic magmas generated by partial melting of garnet pyroxenite // Geology 2003. Vol. 31. P. 481–484.
- Huhma H. Isotope results from Lapland-Kola province in Finland. ‒ Geol. Surv. Finland. 2019. Open file. Res. Rep. 37/2019. P. 44‒52. URL: http://tupa.gtk.fi/raportti/aineistotallenne/37_2019.zip
- Janik T., Kozlovskaya E., Heikkinen P., Yliniemi J., Silvennoinen H. Evidence for preservation of crustal root beneath the Proterozoic Lapland-Kola orogen (northern Fennoscandian Shield) derived from P- and S-wave velocity models of POLAR and HUKKA wide-angle reflection and refraction profiles and FIRE4 reflection transect // J. Geophys. Res. 2009. Vol. 114. 06308. doi: 10.1029/2008JB005689.
- Kempton P.D., Downes H., Sharkov E.V., Vetrin V.N., Ionov D.A., Carswell D.A., Beard V.A. Petrology and geochemistry of xenoliths from the Northern Baltic shield: Evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane // Lithos. 1995. Vol. 36. P. 157‒184.
- Kempton P.D., Downes H., Neymark L.F. Wartho J.A., Zartman R.E., Sharkov E.V. Garnet granulite xenoliths from the Northern Baltic Shield ‒ the underplated lower crust of the Palaeoproterozoic large igneous province? // J. Petrol. 2001. Vol. 42. No. 4. P. 731‒763.
- Kendrick J., Duguet M., Kirkland C.L, Liebmann L., Lin S., Moser D.E., Yakymchuk C. Anatomy of a craton: Isotopic heterogeneity across an Archean crustal cross-section // Precambrian Research. 2023. Vol. 389. 107005. doi: 10.1016/j.precamres.2023.107005.
- Kontinen A. An Early Proterozoic ophiolite ‒ the Jormua mafic-ultramafic complex, northeastern Finland // Precambrian Research. 1987. Vol. 35. P. 313–341.
- Korhonen J.V., Koistinen T., Elo S., and Working Group. Preliminary magnetic and gravity anomaly maps of the Fennoscandian Shield 1:10 000 000 // Geol. Surv. Finland. Spec. Pap. 1999. Vol. 27. P. 175–181.
- Korja A., Korja T., Luosto U., Heikkinen P. Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian shield: Implications for Precambrian crustal evolution. ‒ In: Plate Tectonic Signatures in the Continental Lithosphere. ‒ Ed. by A.G. Green, A. Kröner, J.-J. Götze, N. Pavlenkova // Tectonophysics. 1993. Vol. 219. P. 129‒152.
- Kogiso T., Hirschmann M.M., Pertermann M. High-pressure partial melting of mafic lithologies in the mantle // J. Petrol. 2004. Vol. 45. No. 12. P. 2407‒2422.
- Köykkä J., Lahtinen R., Huhma H. Provenance evolution of the Paleoproterozoic metasedimentary cover sequences in northern Fennoscandia: Age distribution, geochemistry, and zircon morphology // Precambrian Research. 2019. Vol. 331. https://doi.org/10.1016/j.precamres.2019.105364
- Laajoki K., Huhma H. Detrital zircon dating of the Palaeoproterozoic Himmerkinlahti member, Posio, northern Finland: Lithostratigraphic implications // Bull. Geol. Soc. Finland. 2006. Vol. 78. P. 177−182.
- Lahtinen R., Korja A., Nironen M. Palaeoproterozoic tectonic evolution of the Fennoscandian Shield. ‒ In: The Precambrian Bedrock of Finland – Key to the Evolution of the Fennoscandian Shield. ‒ Ed. by M. Lehtinen, P. Nurmi, T. Rämö, (Elsevier Sci., Amsterdam, the Netherland. 2005), P. 418–532.
- Lahtinen R., Huhma H. A revised geodynamic model for the Lapland-Kola Orogen // Precambrian Research. 2019. Vol. 330. P. 1‒19. doi: 10.1016/j.precamres.2019.04.022
- Lahtinen R., Huhma H., Sayab M., Lauri L.S., Hölttä P. Age and structural constraints on the tectonic evolution of the Paleoproterozoic Central Lapland Granitoid Complex in the Fennoscandian Shield //Tectonophysics. 2018. Vol. 745. P. 305–325. Doi: https://doi.org/10.1016/j.tecto.2018.08.016
- Lambart S., Baker M.B., Stolper E.M. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa // J. Geophys Res. Solid Earth. 2016. Vol. 121. No. 8. P. 5708–5735. doi: 10.1002/2015JB012762.
- Lambart S., Laporte D.P., Schiano P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints // Lithos. 2013. Vol. 160–161. P. 14‒36.
- Lee C.-T. A Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle // J. Geophys. Res. 2003. Vol. 108. No. B9. doi: 10.1029/2003JB002413.
- Lehtonen M., Airo M.-L., Eilu P., Hanski E., Kortelainen V., Lanne E., Manninen T., Rastas P., Rasanen J. ja Vissansalo P. The stratigraphy, petrology and geochemistry of the Kittila greenstone area, northern Finland. ‒ (Geol. Surv. of Finland. Rep. of Investigat. Espoo. 1998. Vol. 140), 1998–144 pp.
- Luosto U. Structure of the Earth’s crust in Fennoscandia as revealed from refraction and wide-angle reflection studies // Geophysica. 1997. Vol. 33. No. 1. P. 3−16.
- Luosto U., Flueh E.R., Lund C.E., and working group. The crustal structure along the Polar profile from seismic refraction investigations // Tectonophysics. 1989. Vol. 162. P. 51−85.
- Li X., Zhang L., Wei C., Bader T., Guo J. Cold subduction recorded by the 1.9 Ga Salma eclogite in Belomorian Province (Russia) // Earth Planet. Sci. Lett. 2023. Vol. 602. doi: 10.1016/j.epsl.2022.117930.
- Li X.L., Zhang L.F., Wei C.J., Slabunov A.I. Metamorphic P‒T path and zircon U‒Pb dating of Archean eclogite association in Gridino complex, Belomorian province, Russia // Precambrian Research. 2015. Vol. 268. P. 74–96. doi: 10.1016/j.precamres.2015.07.009.
- Mancktelow N.S. Tectonic pressure: Theoretical concepts and modelled examples // Lithos. 2008. Vol. 103. P. 149‒177. doi: 10.1016/j.lithos.2007.09.013.
- McKenzie D. Estimating Te in the presence of internal loads // J. Geophys. Res. 2003. Vol. 108. No. B9. Art. 2438. doi: 10.1029/2002JB001766, 2003.
- McKenzie D., Bickle M. J. The volume and composition of melt generated by extension of the lithosphere // J. Petrol. 1988. Vol. 29. P. 625–679.
- Mints M.V., Dokukina K.A., Konilov A.N., Philippova I.B., Zlobin V.I., Babayants P.S., Belousova E.A., Blokh Y.I., Bogina M.M., Bush W.A., Dokukin P.A., Kaulina T.V., Natapov L.M., Piip V.B., Stupak V.M., Suleimanov A.K., Trusov A.I., Van K.V., Zamozhniaya N.G. East European Craton: Early Precambrian history and 3D models of deep crustal structure. ‒ (GSA, Spec. Pap., 2015. Vol. 510). 443 pp.
- Molnár F., Middleton A., Stein H., O`Brien H., Lahaye Y., Huhma H., Pakkanen L., Johanson B. Repeated syn- and post-orogenic gold mineralization events between 1.92 and 1.76 Ga along the Kiistala Shear Zone in the Central Lapland Greenstone Belt, northern Finland // Ore Geol. Rev. 2018. Vol. 10. P. 936–959. doi: 10.1016/j.oregeorev.2018.08.015.
- Nironen M. Proterozoic orogenic granitoid rocks. ‒ In: Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. ‒ Ed. by M. Lehtinen, P.A. Nurmi, O.T. Rämö, (Elsevier, Amsterdam, the Netherlands. 2005), P. 443–480.
- O’Brien H.E., Peltonen P., Vartiainen H. Kimberlites, carbonatites, and alkaline rocks. ‒ In: Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. ‒ Ed. by M. Lehtinen, P.A. Nurmi, O.T. Rämö, (Elsevier B.V., Amsterdam, the Netherlands. 2005). P. 605–644.
- O’Brien P.J. Eclogites and other high-pressure rocks in the Himalaya: A review // Geol. Soc. London. Spec. Publ. 2019. Vol. 483. No. 1. P. 183‒213. doi: 10.1144/SP483.13.
- Patison N.L., Korja A., Lahtinen R., Ojala V.J., and the FIRE Working Group. FIRE seismic reflection profiles 4, 4A and 4B: Insights into the Crustal Structure of Northern Finland from Ranua to Naatamo // Geol. Surv. Finland. Spec. Pap. 2006. Vol. 43. P. 161–222.
- Pearce J. A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. Vol. 100. P. 14‒48. doi: 10.1016/j.lithos.2007.06.016.
- Peltonen P. Ophiolites. ‒ In: Precambrian Geology of Finland – Key o the Evolution of the Fennoscandian Shield. ‒ Ed by M. Lehtinen, P.A. Nurmi, O.T. Rämö, (Elsevier B.V., Amsterdam, the Netherlands. 2005), P. 237−278.
- Peltonen P., Kontinen A., Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, North-eastern Finland // J. Petrol. 1996. Vol. 37. P 1359–1383.
- Peltonen P., Kontinen A., Huhma H. Petrogenesis of the mantle sequence of the Jormua Ophiolite (Finland): Melt migration in the upper mantle during Palaeoproterozoic continental break-up // J. Petrol. 1998. Vol. 39. P. 297–329.
- Petrini K., Podladchikov Yu. Lithospheric pressure–depth relationship in compressive regions of thickened crust // J. Metamorth. Geol. 2000. Vol. 18. P. 67‒77.
- Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust // Tectonophysics. 2018. Vol. 746. P. 572‒586. doi: 10.1016/j.tecto.2016.11.041.
- Percival J.A., West G.F. The Kapuskasing uplift: a geological and geophysical synthesis // Can. J. Earth Sci. 1994. Vol. 31. P. 1256‒1286.
- Pilipenko V.N., Pavlenkova N.I., Luosto U. Wide-angle reflection migration technique with an example from the POLAR profile (northern Scandinavia) // Tectonophysics. 1999. Vol. 308. P. 445−457.
- Puchtel I.S., Hofmann A.W., Mezger K., Shchipansky A.A., Samsonov A.V. Oceanic plateau for continental crustal growth in the Archean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield // Earth Planet. Sci. Lett. 1998. Vol. 155. P. 57‒74.
- Raimondo T., Hand M., Collins W.J. Compressional intracontinental orogens: Ancient and modern perspectives // Earth-Sci. Rev. 2014. Vol. 130. P. 128‒153. doi: 10.1016/j.earscirev.2013.11.009/
- Ranally G. Reology and deep tectonics // Annali di Gephisica. 1997. Vol. XL. No. 3. P. 671‒680.
- Sayab М., Molnár F., Aerden D., Niiranen T., Kuval J., Välimaa J. A succession of near-orthogonal horizontal tectonic shortenings in the Paleoproterozoic Central Lapland Greenstone Belt of Fennoscandia: constraints from the world-class Suurikuusikko gold deposit // Mineralium Deposita 2019. doi: 10.1007/s00126-019-00910-7.
- Saverikko M. The Lapland greenstone belt: Stratigraphic and depositional features in northern Finland // Bull. Geol. Soc. Finland. 1987. Vol. 59. No. 2. P. 129‒154.
- Schmalholz S.M., Medvedev S., Lechmann S.M., Podladchikov Y. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy // Geophys. J. Int. 2014. Vol. 197. P. 680–696. doi: 10.1093/gji/ggu040.
- Sciöld T., Bogdanova S., Gorbatschev R., Bibikova S. Timing of late Paleoproterozoic in the northern Belomorian Belt, White sea region: conclusions from U‒Pb isotopic data and P‒T evidence // Bull. Geol. Soc. Finland. 2001. Vol. 73. No. 1–2. P. 59‒73.
- Searle M.P. Timing of subduction initiation, arc formation, ophiolite obduction and India-Asia collision in the Himalaya // Geol. Soc. London. Spec. Publ. 2019. Vol. 483. P. 19−37. doi: 10.1144/SP483.8.
- Shorttle O., Maclennan J., Lambart S. Quantifying lithological variability in the mantle // Earth and Planet. Sci. Lett. 2014. Vol. 395. P. 24–40. doi: 10.1016/j.epsl.2014.03.040.
- Sizova E., Gerya T., Brown M. Contrasting styles of Phanerozoic and Precambrian continental collision // Gondwana Research. 2014. Vol. 25. P. 522–545. doi: 10.1016/j.gr.2012.12.011.
- Wang G., Thybo H., Artemieva I.M. No mafic layer in 80 km thick Tibetan crust // Nature Communications. 2021. doi: 10.1038/s41467-021-21420-z/
- Willegers B.J.A., van Gool J.A.M., Wijbrans J.R., Krogstad E.J., Mezger K. Post-tectonic cooling of the Nagssugtoqidian orogen and a comparison of contrasting cooling histories in Precambrian and Phanerozoic orogens // J. Geol. 2002. Vol. 110. P. 503‒517.
- Windley B. Proterozoic collisional and accretionary orogens. ‒ In: Proterozoic Crustal Evolution. ‒ Ed. by K.C. Condie, // Develop. Precambr. Geol. 1992. Vol. 10. P. 419–446. doi: 10.1016/S0166-2635(08)70125-7.
- Wyllie P.J., Wolf M.B., van der Laan S.R. Conditions for formation of tonalites and trondhjemites: Magamtic sources and products. ‒ In: Greenstone Belts. ‒ Ed by M. de Wit, L.D. Ashwal, Oxford Monogr. Geol. Geophys. 1997. Vol. 35. P. 256‒266.
- Yu H.L., Zhang L.F., Wei C.J., Li X.L., Guo J.H. Age and P–T conditions of the Gridino-type eclogite in the Belomorian Province, Russia // J. Metamorph. Geol. 2017. Vol. 35. P. 855‒869. doi: 10.1111/jmg.12258.
- Yu H., Zhang L., Lanari P., Rubatto D., Li X. Garnet Lu‒Hf geochronology and P‒T path of the Gridino-type eclogite in the Belomorian Province, Russia // Lithos. 2019. Vol. 326‒327. P. 313‒326. doi: 10.1016/j.lithos.2018.12.032.
Supplementary files
