Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

No 1 (2024)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Articles

Paleomagnetism of the phanerozoic sequences of the central part of the Central Asian fold belt

Kovalenko D.V., Yarmolyuk V.V., Kozlovsky A.M.

Abstract

The article summarizes paleomagnetic data for Tuva, Mongolia and Eastern China, which showed that in the central part of the Central Asian fold belt, areas with different paleomagnetic characteristics are distinguished, these are areas located north of the Mongol-Okhotsk mobile belt, the western and eastern parts of the South Mongolia and Eastern China. The areas located north of the Mongol-Okhotsk mobile belt were part of the structure of the Siberian continent from the Ordovician and experienced movement similar to the Siberian continent. The regions of the western part of Southern Mongolia have been part of the structure of the Siberian continent since the late Carboniferous. The geological complexes of the eastern part of Southern Mongolia and the blocks of Eastern China in the Middle Paleozoic and Early Mesozoic were located in a latitudinal interval close to the North China block and experienced similar latitudinal movements and similar rotations. The large difference between the paleolatitudes of coeval strata in western and eastern Mongolia and Eastern China south of the Mongol-Okhotsk mobile belt suggests the existence of a tectonic boundary that separated blocks formed at paleolatitudes along the 107E meridian, close to Siberia and Northern China. To the west of the 107° longitude meridian, the paleolatitudes of formation of the Late Carboniferous–Permian strata are close to the paleolatitudes of Siberia, and to the east of the meridian — to the paleolatitudes of Northern China. The width of the Mongol-Okhotsk Ocean in the late Paleozoic–early Mesozoic was 30°–40° latitude (~3000–4000 km). The southern limit of the Mongol-Okhotsk Ocean was segmented and consisted of terranes of various genesis and structure. The closure of segments of the Mongol-Okhotsk Ocean occurred as a result of the collision of terranes with the Siberian continent during the period from the Late Carboniferous (in the west) to the Jurassic (in the east).

Geotektonika. 2024;(1):3-27
pages 3-27 views

Arc tectonic elements and the upper mantle structure of the Central and Southeastern Asia: seismic tomography and seismicity data

Sokolov S.Y., Trifonov V.G.

Abstract

Analysis of the upper mantle plumes spatial distribution in the inner part of the Sunda arc shows a number of plume bodies interrupting the stagnating slab framed from the south by the sinking slab of the Sunda Arc. Possible mechanisms providing this structure of the mantle are (i) sublatitudinal toroidal mantle flow through a gap in a flat slab and (ii) roll-back capable of forming a gap in a flat slab and launching upper mantle plumes in it without deep (>1000 km) roots. The space above the slab top surface consists of local hot mantle bodies, which are secondary plumes and often form local rift segments. The three-dimensional mapping of δVp in the Tibet and Central Asia region contains structural styles similar to the Sunda Arc region. There is a region of subhorizontal fragments of slabs and a gap in which plume anomalies of deep and secondary origin are established. The vectors of the movements of rock masses along the shape of the Sunda Arc detachment planes, detected from seismic events, are directed outward from the center of the curvature of the arc in which secondary upper mantle plumes are concentrated. This indicates the presence of thrust processes at the arc front that are not associated with the subducting plate. Thrusting at the arc is accompanied by less number of events along antithetical thrusts. The fan-shaped orientation of azimuth movements along the Himalayas is directed to Hindustan. This shows that the main indicator of tectonic activity — seismic events — has a direction of rock mass displacement to the south from the back-arc stretching region within Tibet with the formation of thrust deformations during movements along the detachment planes. In the Himalayan arc, as well as the Sunda Arc, two directions of seismic movements are distinguished. The first direction corresponds to the model of the Indian Plate subduction. The second direction combines the displacement of the thrusts on the Indian Plate.

Geotektonika. 2024;(1):28-47
pages 28-47 views

Digital models of the deep structure of the Earth’s crust in the Eurasian Basin of the Arctic Ocean

Chernykh A.A., Yakovenko L.V., Korneva M.S., Glebovsky V.Y.

Abstract

Based on the method of gravity modeling, taking into account the accumulated geophysical data on the Eurasian Basin of the Arctic Ocean, the authors have developed digital models of the deep structure of the Earth’s crust. The digital models of the basement relief and sedimentary cover thickness in the Eurasia Basin are calculated on the basis of reinterpretation of depth multi-channel seismic cross-sections and 2D gravity modeling. The digital models of the Mohorovichich surface relief and the earth’s crust thickness were calculated using the improved 3D gravity modeling method. It is shown that the reason for the deepening of the basement in the Nansen Basin by 1‒1.5 km in comparison with the Amundsen Basin is a larger volume of accumulated sedimentary cover in the Nansen Basin, with a similar thickness of the crust ~4.8 km in both basins. The characteristics of the oceanic crust studied on the basis of the obtained digital models reveal a complex, three-dimensional variability characteristic of ultra-slow spreading ridges. In the region of the Gakkel Ridge, which was formed at full spreading rates of less than 12 mm/year, the maximum spread of crust thickness is observed, as well as the predominance of the role of the tectonic factor over the magmatic one during the accretion of oceanic crust. Latter fact is expressed in the formation of extended subsea ridges parallel to the amagmatic segments of the ridge.

Geotektonika. 2024;(1):48-70
pages 48-70 views

The influence of modern geodynamic processes on the formation of the coastal relief and seabed of the White Sea

Rybalko A.E., Shcherbakov V.A., Tokarev M.Y., Kudinov A.A., Belyaev P.Y., Repkina T.Y., Zaretskaya N.E., Terekhina Y.E., Ivanova V.V., Slichenkov V.I.

Abstract

The article presents the results of the study of manifestations of modern geodynamic movements in the bottom structures of the White Sea (Baltic crystalline shield). Based on expeditionary work carried out in the White Sea, data were obtained on the formation of the seabed relief and the thickness of loose sediments under the influence of modern seismotectonic events and geodynamic movements, as well as long-term neotectonic processes. It is shown that the Kandalaksha Bay depression is a modern graben developing along faults activated in the Quaternary. Graben development continues to the northwest, where a new Quaternary structure is formed. Signs of manifestations of modern geodynamic movements have been identified. The role of disjunctive tectonics in the formation of slopes and tectonic structures transverse to the strike of the bay, morphologically represented by relief ridges cutting the SrednyLudy rise, located in Kandalaksha Bay, is shown. The influence of modern geodynamic processes on the distribution of thicknesses of Quaternary sediments of various genesis and the mosaic distribution of modern bottom sediments has been established. The influence of gravitational processes involved in the formation of underwater landslides, leading to the appearance of abnormally thick layers of loose sedimentary cover, has been studied.

Geotektonika. 2024;(1):71-87
pages 71-87 views

The layered tectonics and mathematical modeling of geodynamic setting of the Fergana depression (Uzbekistan)

Atabekov I.U., Sadykov Y.M., Mamarakhimov J.K.

Abstract

The geodynamic features of the Fergana intermountain depression are the presence of a rift during meridional compression of the region and the discrepancy between the location of earthquake sources and the boundaries of heterogeneities in the layers of the earth’s crust. The first feature is solved using the ideas of multi-stage plate tectonics, which provides an additional opportunity to assess the oil and gas content of the basin. However, existing hypothetical tectonic schemes are not supported by mathematical calculations. To clarify these features, we have developed a mathematical model of the stress-strain state in relation to one of the cross sections of the Earth’s crust in the Fergana depression, which has a zonally inhomogeneous density structure. The results of the mathematical model show that the presence of blocks of different densities creates displacements under the influence of horizontal compressive stresses. It is also shown that the isolines of maximum tangential stresses are located close to the boundaries of inhomogeneous zones, which indicates the presence of large errors in determining earthquake hypocenters.

Geotektonika. 2024;(1):88-98
pages 88-98 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».