Transform Faults and Non-Transform Discontinuities of the Western South-West Indian Ridge: Experimental Modeling
- Авторлар: Bogoliubsk V.A.1, Dubinin E.P.1, Grokholsky A.L.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: № 1 (2025)
- Беттер: 104-124
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0016-853X/article/view/293973
- DOI: https://doi.org/10.31857/S0016853X25010068
- EDN: https://elibrary.ru/DAVHVX
- ID: 293973
Дәйексөз келтіру
Аннотация
The article considers the segment of the Southwest Indian Ridge located between the Du Toit–Andrew Bain–Prince Edward fault zone system and the Bouvet triple junction. Two areas are distinguished within its boundaries, which differ in the structure of the seafloor topography and in their development. In the eastern area (from 9° E to 25° E) there are no transform faults and significant thermal anomalies in the mantle. The western section of the studied part of the ridge (from the Bouvet Triple Junction to 9° E) is dissected by several large transform faults and develops under the noticeable influence of the thermal anomaly of the Bouvet plume. Such a relationship between the segmentation of the seafloor topography and thermal anomalies of the mantle is atypical for areas of slow and ultra-slow spreading. Here the ridges are cut by transform faults, in areas with a noticeable thermal influence of mantle thermal anomalies these faults disappear. We carried out physical modeling and analysis of temperature field profiles in the constructed model to assess the influence of the melt accumulation depth on the segmentation of the Southwest Indian Ridge. We found that the melt accumulation depth has a noticeable effect on the segmentation of the mid-ocean ridge (MOR) bathymetry, but this is not the only main influencing factor. The segmentation of the MOR can be affected by the serpentinization process as well. A decrease in the spreading rate is accompanied by an increase in the depth of the magma chamber, or the area of the focused mantle upwelling. This leads to widespread serpentinization at the extension axis due to relatively low-intensity magmatism and high fracturing of rocks and, as a consequence, to the reorganization of the structural segmentation of the ridge due to the disappearance of transform faults with a decrease in the lithosphere strength. The combined effect of the depth of the melt accumulation and serpentinization on the section of the Southwest Indian Ridge, where there was no significant thermal anomaly in the mantle, could lead not only to the disappearance of transform faults, but also to maintain this state for a long period of time. In the western part of the study area of the Southwest Indian Ridge, which is under the influence of the mantle thermal anomaly, the conditions for serpentinization were less suitable, so transform faults are well developed here.
Толық мәтін

Авторлар туралы
V. Bogoliubsk
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: bogolubskiyv@gmail.com
Ресей, 1, Leninskie Gory, Moscow, 119991
E. Dubinin
Lomonosov Moscow State University
Email: bogolubskiyv@gmail.com
Ресей, 1, Leninskie Gory, Moscow, 119991
A. Grokholsky
Lomonosov Moscow State University
Email: bogolubskiyv@gmail.com
Ресей, 1, Leninskie Gory, Moscow, 119991
Әдебиет тізімі
- Булычев А.А., Гасперини Л., Гилод Д.А., Зителлинни Н., Куликов Е.Ю., Лодоло Э., Лиджи М., Мазарович А.О., Соколов С.Ю., Шрейдер А.А. Спрединг восточной части Африкано-Антарктического хребта по данным детальных геомагнитных исследований в районе острова Буве // Океанология. 1998. Т. 38. № 3. С. 445–452.
- Грохольский А.Л., Дубинин Е.П. Структурообразование в рифтовых зонах и поперечных смещениях осей спрединга по результатам физического моделирования // Физика Земли. 2010. № 5. С. 49–55.
- Грохольский А.Л., Дубинин Е.П. Экспериментальное моделирование структурообразующих деформаций в рифтовых зонах срединно-океанических хребтов // Геотектоника. 2006. № 1. С. 76–94.
- Дубинин Е.П., Кохан А.В., Сущевская Н.М. Тектоника и магматизм ультрамедленных спрединговых хребтов // Геотектоника. 2013. № 3. С. 3–30. doi: 10.7868/S0016853X13030028
- Дубинин Е.П., Сущевская Н.М., Грохольский А.Л. История развития спрединговых хребтов Южной Атлантики и пространственно-временное положение тройного сочленения Буве // Российский журнал наук о Земле. 1999. Т. 1. № 5. С. 423–443.
- Кохан А.В., Дубинин Е.П. Особенности морфоструктурной сегментации рифтовой зоны Юго-Восточного Индийского хребта в районах мантийных термических аномалий // Вестн. МГУ. Сер. 5. География. 2017. № 6. С. 44–54.
- Крымский Р.Ш., Сущевская Н.М., Беляцкий Б.В., Мигдисова Н.А. Особенности изотопного состава осмия базальтовых стекол западного окончания Юго-Западного Индийского хребта // ДАН. 2009. Том 428. № 1. С. 87–92.
- Пейве А.А. Аккреция океанической коры в условиях косого спрединга // Геотектоника. 2009. № 2. С. 5‒19.
- Пейве А.А., Соколов С.Ю., Разумовский А.А., Иваненко А.Н., Патина И.С., Боголюбский В.А., Веклич И.А., Денисова А.П. Соотношение магматических и тектонических процессов при формировании океанической коры к югу от разлома Чарли Гиббс (Северная Атлантика) // Геотектоника. 2023. № 1. С. 48–74. doi: 10.31857/S0016853X23010058
- Соколов С.Ю., Добролюбова К.О., Турко Н.Н. Связь поверхностных геолого-геофизических характеристик с глубинным строением Срединно-Атлантического хребта по данным сейсмотомографии // Геотектоника. 2022. № 2. С. 3–20. doi: 10.31857/S0016853X22020060
- Чупахина А.И., Дубинин Е.П., Грохольский А.Л., Рыжова Д.А., Булычев А.А. Физическое моделирование сегментации осевой зоны южного сегмента Срединно-Атлантического хребта // Вестн. ВГУ. Сер.: Геология. 2022. № 3. С. 89–98. doi: 10.17308/geology/1609-0691/2022/3/89-98
- Шеменда А.И. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. № 10. С. 10–19.
- Benediktsdóttir Á., Hey R., Martinez F., Höskuldsson Á. Detailed tectonic evolution of the Reykjanes Ridge during the past 15 Ma // Geochem., Geophys., Geosyst. (G3). 2012. Vol. 13. No. 2. P. 2428–2455. doi: 10.1029/2011GC003948
- Bernard A., Munchy M., Rotstein Y., Sauter D. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data // Geophys. J. Int. 2005. Vol. 162. P. 765–778. doi: 10.1111/j.1365-246X.2005.02672.x
- Bickert M., Cannat M., Tommasi A., Jammes S., Lavier L. Strain localization in the root of detachment faults at a melt-starved mid-ocean ridge: A microstructural study of abyssal peridotites from the Southwest Indian Ridge // Geochem., Geophys., Geosyst. (G3). 2021. Vol. 22. Art. e2020GC009434. doi: 10.1029/2020GC009434
- Cannat M., Sauter D., Escartín J., Lavier L., Picazo S. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges // Earth and Planet. Sci. Lett. 2009. Vol. 288. P. 174–183. doi: 10.1016/j.epsl.2009.09.020
- Corti G. Evolution and characteristics of continental rifting: Analogue modeling-inspired view and comparison with examples from the East African Rift System // Tectonophysics. 2012. Vol. 522‒523. P. 1–33. doi: 10.1016/j.tecto.2011.06.010
- Dantas C., Ceuleneer G., Gregoire M., Puthon M., Freydier R., Warren J., Dick H.J.B. Pyroxenites from the Southwest Indian Ridge, 9-16°E: Cumulates from incremental melt fractions produced at the top of a cold melting regime // J. Petrol. 2007. Vol. 48. No. 4. P. 647–660. doi: 10.1093/petrology/egl076
- Davis J.K. The breakup of East Gondwana: insights from plate modeling, basin analysis, and numerical experiments. – PhD Thesis, (The University of Texas at Austin, Austin, USA. 2017). 166 p.
- DeMets C., Merkouriev S., Sauter D. High-resolution estimates of Southwest Indian Ridge plate motions, 20 Ma to Present // Geophys. J. Int. 2015. Vol. 203. P. 1495–1527. doi: 10.1093/gji/ggv366
- Dick H.J.B., Lin J., Schouten H. An ultraslow-spreading class of ocean ridge // Nature. 2003. Vol. 426. P. 405–412. doi: 10.1038/nature02128
- Escartín J., Hirth G., Evans B. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges // Earth and Planet. Sci. Lett. 1997. Vol. 151. P. 181–189. doi: 10.1016/S0012-821X(97)81847-X
- Graham Baines A., Cheadle M.J., Dick H.J.B., Scheirer A.H., John B.E., Kusznir N.J., Matsumoto T. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge // Geology. 2003. Vol. 31. No. 12. P. 1105–1108. doi: 10.1130/G19829.1
- Grindlay N.R., Madsen J.A., Rommevaux-Jestin C., Sclater J. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15°30′E to 25°E) // Earth and Planet. Sci. Lett. 1998. Vol. 161. P. 243–253. doi: 10.1016/S0012-821X(98)00154-X
- Grindlay N.R., Madsen J.A., Rommevaux-Jestin C., Sclater J., Murphy S. Southwest Indian Ridge 15°E‒35°E: A geophysical investigation of an ultra-slow spreading Mid-Ocean Ridge system.‒ In: International Ridge News. – Ed. by A. Adamczewska, M. Kaczmarz (Fall Winter, Estorial, Portugal. 1996. Vol. 5. Is. 1). P. 7–12.
- Le Roex A.P., Dick H.J.B., Erlank A.J., Reid A.M., Frey F.A., Hart S.R. Geochemistry, mineralogy and petrogenesis of lavas eupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees East // J. Petrol. 1983. Vol. 24. Part 3. P. 267–318. doi: 10.1093/petrology/24.3.267
- Ligi M., Bonatti E., Bortoluzzi G., Carrara G., Fabretti P., Gilod D., Peyve A.A., Skolotnev S., Turko N. Bouvet triple junction in the South Atlantic: Geology and evolution // J. Geophys. Res. 1999. Vol. 104. No. B12. P. 29365–29385. doi: 10.1029/1999JB900192
- Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3 / NOAA National Centers for Environmental Information. Available from: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.geophysical_models:EMAG2_V3 (Last Accessed 01.10.2022). doi: 10.7289/V5H70CVX
- Montési L.G.J., Behn M.D., Hebert L.B., Lin J., Barry J.L. Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°–16°E // J. Geophys. Res. 2011. Vol. 116. Art. B10102. doi: 10.1029/2011JB008259
- O’Connor J.M., Jokat W., le Roex A.P., Class C., Wijbrans R., Kuiper K.F., Nebel O. Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes // Nature Geosci. 2012. Vol. 5. P. 735‒738. doi: 10.1038/ngeo1583
- Parker R.L., Oldenburg D. Thermal model of oceanic ridges // Nature Phys. Sci. 1973. Vol. 242. Is. 122. P. 137–139. doi: 10.1038/physci242137a0
- Ryan W.B.F., Carbotte S.M., Coplan J., O’Hara S., Melkonian A., Arko R., Weissel R.A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., Zemsky R. Global multi-resolution topography (GMRT) synthesis data set // Geochem., Geophys., Geosyst. (G3). 2009. Vol. 10. Art. Q03014. doi: 10.1029/2008GC002332
- Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. Vol. 346. No. 6205. P. 65–67. doi: 10.1126/science.1258213
- Sauter D., Cannat M. The ultraslow spreading Southwest Indian Ridge. – In: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. – Ed. by P.A. Rona et al., (Geophys. Monogr. Ser. Vol. 188., Washington, DC, USA, 2010.). P. 153–173. doi: 10.1029/2008GM00843
- Sauter D., Cannat M., Rouméjon S., Andreani M., Birot D., Bronner A., Brunelli D., Carlut J., Delacour A., Guyader V., MacLeod C.J., Manatschal G., Mendel V., Ménez B., Pasini V., Ruellan E., Searl R. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years // Nature Geosci. 2013. Vol. 6. P. 314–320. doi: 10.1038/ngeo1771
- Schimschal C.M., Jokat W. The Falkland Plateau in the context of Gondwana breakup // Gondwana Research. 2019. Vol. 68. P. 108–115. doi: 10.1016/j.gr.2018.11.011
- Schmid F., Schlindwein V. Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment // Geochem., Geophys., Geosyst. (G3). 2016. Vol. 17. Is. 7. P. 2905–2921. doi: 10.1002/2016GC006271
- Sclater J.G., Christie P.A.F. Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin // J. Geophys. Res. 1980. Vol. 85. Is. B7. P. 3711‒3739. doi: 10.1029/JB085iB07p03711
- Shemenda A.I., Grokholsky A.L. A formation and evolution of overlapping spreading centers (constrained on the basis of physical modelling) // Tectonophysics. 1991. Vol. 199. P. 389–404. doi: 10.1016/0040-1951(91)90180-Z
- Shemenda A.I., Grocholsky A.L. Physical modeling of slow seafloor spreading // J. Geophys. Res. 1994. Vol. 99. P. 9137–9153. doi: 10.1029/93JB02995
- Standish J.J., Dick H.J.B., Michael P.J., Melson W.G., O’Hearn T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): Major element chemistry and the importance of process versus source // Geochem., Geophys. Geosyst. (G3). 2008. Vol. 9. Is. 5. doi: 10.1029/2008GC001959
- Standish J.J., Sims K.W.W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge // Nature Geosci. 2010. Vol. 3. P. 286–292. doi: 10.1038/NGEO824
- Thompson J.O., Moulin M., Aslanian D., de Clarens P., Guillocheau F. New starting point for the Indian Ocean: Second phase of breakup for Gondwana // Earth-Sci. Rev. 2019. Vol. 191. P. 26–56. doi: 10.1016/j.earscirev.2019.01.018
- Turcotte D.L., Schubert G. Geodynamics. – Ed. by D.L. Turcotte, G. Schubert, (Cambridge Univ. Press, Cambridge, UK. 2002. 2nd edn.). 438 p.
- Wright T.J., Sigmundsson F., Pagli C., Belachew M., Hamling I.J. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land // Nature Geosci. 2012. Vol. 5. P. 242–250. doi: 10.1038/ngeo1428
- Yoshii T. Regionality of group velocities of Rayleigh waves in the Pacific and thickening of the plate // Earth Planet. Sci. Lett. 1975. Vol. 25. Is. 3. P. 305–312. doi: 10.1016/0012-821X(75)90246-0
- Yu X., Dick H.J.B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge // Earth and Planet. Sci. Lett. 2020. Vol. 531. Art. 116002. doi: 10.1016/j.epsl.2019.116002
- Yu X., Dick H., Li X.H., You C.F., Hui D.Y., Hang H. The geotectonic features of the Southwest Indian Ridge and its geodynamic implications // Chin. J. Geophys. 2020. Vol. 63. No. 10. P. 3585–3603. doi: 10.6038/cjg2020N0230
- Zhou F., Dyment J., Tao C., Wu T. Magmatism at oceanic core complexes on the ultraslow Southwest Indian Ridge: Insights from near-seafloor magnetics // Geology. 2022. Vol. 50. No. 6. P. 726–730. doi: 10.1130/G49771.1
- InfiCam. URl: https://gitlab.com/netman69/inficam. Accessed September, 2024.
- ArcGIS 10.5. URL: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources. Accessed September, 2024.
- GeoSetter. URL: https://geosetter.de/en/main-en/. Accessed September, 2024.
- Agisoft Metashape. URL: https://www.agisoft.com/. Accessed September, 2024.
Қосымша файлдар
