Structure of a Na+ cation hydration shell on heating in a planar nanopore


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Resistance to heating above the boiling point of water of the molecular structure of a single-charged sodium cation hydration shell growing under the conditions of a model planar nanopore with a width of 5 Å is studied by computer simulation. Monte Carlo calculations of spatial correlation functions are performed in a detailed model with regard to many-body interactions between the ion and water molecules. The system demonstrates an increased resistance to thermal fluctuations along the pore plane and a decreased one in the transverse direction. The heating is accompanied by an enhanced coating effect of molecules around the ion and a diminished effect of extruding the ion out of its own hydration shell. The orientational molecular order due to strong spatial anisotropy inside the nanopore is much more stable than the hydrogen bonds between the molecules.

About the authors

S. V. Shevkunov

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: shevk54@mail.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.