Численное моделирование процесса совместной газификации со ступенчатой подачей угля и биомассы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предлагается ступенчатая схема процесса газификации угля и биомассы, в которой сжигание угля служит для получения высокотемпературного газифицирующего агента, который используется для газификации биомассы. При этом можно снизить термодинамические потери в процессе газификации за счет снижения температуры генераторного газа благодаря высокой реакционной способности биотоплив по сравнению с углем. С помощью стационарной одномерной кинетико-термодинамической модели двухступенчатого реактора проводятся численные расчеты с варьированием соотношения уголь–биотопливо и расхода окислителя. Особенностью модели является учет рециркуляции недожога. Результаты расчетов позволяют определить оптимальную степень замещения угля растительной биомассой по технологическим критериям (химический КПД, выход горючих компонентов).

Об авторах

И. Г. Донской

ФГБУН Институт систем энергетики им. Л.А. Мелентьева СО РАН

Автор, ответственный за переписку.
Email: donskoy.chem@mail.ru
664033 Иркутск, Россия

Список литературы

  1. Bhuiyan A.A., Blicblau A.S., Sadrul Islam A.K.M., Naser J. // Journal of the Energy Institute. 2018. V. 91. No. 1. P. 1. https://doi.org/10.1016/j.joei.2016.10.006
  2. Vershinina K., Dorokhov V., Romanov D., Strizhak P. // Waste and Biomass Valorization. 2023. V. 14. P. 431. https://doi.org/10.1007/s12649-022-01883-x
  3. Guo J.-X. // Clean Technologies and Environmental Policy. 2022. V. 24. P. 2531. https://doi.org/10.1007/s10098-022-02332-y
  4. Кейко А.В., Ширкалин И.А., Свищев Д.А. // Изв. РАН. Энерг. 2006. № 3. С. 55.
  5. Kirubakaran V., Sivaramakrishnan V., Nalini R. et al. // Energy Sources A. 2009. V. 31. No. 11. P. 967. http://dx.doi.org/10.1080/15567030801904541
  6. Svishchev D. // Energy Systems Research. 2021. V. 4. No. 3. P. 38. http://dx.doi.org/10.38028/esr.2021.03.0004
  7. van der Drift A., Boerrigter H., Coda B., Cieplik M.K., Hemmes K. Entrained flow gasification of biomass. Ash behaviour, feeding issues, and system analyses. Report ECN-C-04-039. 2004.
  8. Tolvanen H., Keipi T., Raiko R. // Fuel. 2016. V. 176. P. 153.
  9. Wang T., Stiegel G. (eds.) Integrated gasification combined cycle (IGCC) technologies Woodhead Publ., 2017.
  10. Obernberger I., Brunner T., Mandl C., Kerschbaum M., Svetik T. // Energy Procedia. 2017. V. 120. P. 681. https://doi.org/10.1016/j.egypro.2017.07.184
  11. Шумовский А.В., Горлов Е.Г. // ХТТ. 2022. № 3. С. 13. https://doi.org/10.31857/S0023117722030094 [Solid Fuel Chem. 2022. V. 56. P. 166. https://doi.org/10.3103/S0361521922030090]
  12. He Z.-M., Deng Y.-J., Cao J.-P., Zhao X.-Y. // Fuel. 2024. V. 357A. P. 129728. https://doi.org/10.1016/j.fuel.2023.129728
  13. Thattai A.T., Oldenboek V., Schoenmakers L., Woudstra T., Aravind P.V. // Applied Energy. 2016. V. 168. P. 381. http://dx.doi.org/10.1016/j.apenergy.2016.01.131
  14. Sofia D., Llano P.C., Giuliano A. et al. // Chem. Eng. Res. Des. 2014. V. 92. P. 1428. https://doi.org/10.1016/j.cherd.2013.11.019
  15. Huang J., Liao Y., Lin J. et al. // Energy. 2024. V. 298. P. 131306. https://doi.org/10.1016/j.energy.2024.131306
  16. Kleinhans U., Wieland C., Frandsen F.J., Spliethoff H. // Progress in Energy and Combustion Science. 2018. V. 68. P. 65. https://doi.org/10.1016/j.pecs.2018.02.001
  17. Лапидус А.Л., Шумовский А.В., Горлов Е.Г. // ХТТ. 2023. № 6. С. 11. https://doi.org/10.31857/S0023117723060051 [Solid Fuel Chem. 2023. V. 57. P. 373. https://doi.org/10.3103/S0361521923060046]
  18. Jeong H.J., Hwang I.S., Park S.S., Hwang J. // Fuel. 2017. V. 196. P. 371. http://dx.doi.org/10.1016/j.fuel.2017.01.103
  19. Донской И.Г. // ХТТ. 2019. № 2. С. 55. https://doi.org/10.1134/S002311771902004X [Solid Fuel Chemistry. 2019. V. 53. No. 2. P. 113. https://doi.org/10.3103/S0361521919020046]
  20. Kuznetsov G.V., Romanov D.S., Vershinina K.Yu., Strizhak P.A. // Fuel. 2021. V. 302. P. 121203. https://doi.org/10.1016/j.fuel.2021.121203
  21. Малышев Д.Ю., Сыродой С.В. // Изв. Томск. политехн. ун-та. Инж. георес. 2020. Т. 331. № 6. С. 77. https://doi.org/10.18799/24131830/2020/6/2677
  22. Ambatipudi M.K., Varunkumar S. // Proc. Combust. Inst. 2023. V. 39. P. 3479. https://doi.org/10.1016/j.proci.2022.08.031
  23. Lapuerta M., Hernandez J.J., Pazo A., Lopez J. // Fuel Proc. Technol. 2008. V. 89. No. 9. P. 828. https://doi.org/10.1016/j.fuproc.2008.02.001
  24. Kobayashi N., Suami A., Itaya Y. // J. Chem. Eng. Jpn. 2017. V. 50. No. 11. P. 862. https://doi.org/10.1252/jcej.16we266
  25. Itaya Y., Suami A., Kobayashi N. // AIP Conf. Proc. 2018. V. 1931. P. 020003. https://doi.org/10.1063/1.5024057
  26. Long H.A., Wang T. // Int. J. Energy Res. 2016. V. 40. No. 4. P. 473. https://doi.org/10.1002/er.3452
  27. Deraman M.R., Rasid E.A., Othman M.R., Suli L.N.M. // IOP Conf. Ser. Mat. Sci. Eng. 2019. V. 702. P. 012005. https://doi.org/10.1088/1757-899X/702/1/012005
  28. Uson S., Valero A., Correas L., Martinez A. // Int. J. Thermodynamics. 2004. V. 7. No. 4. P. 165.
  29. Perez-Jeldres R., Cornejo P., Flores M., Gordon A., Garcia X. // Energy. 2017. V. 120. P. 663. https://doi.org/10.1016/j.energy.2016.11.116
  30. Донской И.Г., Свищев Д.А., Шаманский В.А., Козлов А.Н. // Научн. вест. НГТУ. 2015. № 1 (58). С. 231. https://doi.org/10.17212/1814-1196-2015-1-231-245
  31. Donskoy I. // Energy Systems Research. 2021. V. 4. No. 2. P. 27. http://dx.doi.org/10.38028/esr.2021.02.0003
  32. Jahromi M.-A.Y., Atashkari K., Kalteh M. // Int. J. Energy Res. 2019. V. 43. No. 11. P. 5864. https://doi.org/10.1002/er.4692
  33. Hashimoto T., Sakamoto K., Ota K. et al. // Mitsubishi Heavy Industries Technical Review. 2010. V. 47. No. 4. P. 27.
  34. Watanabe H., Kurose R. // Advanced Powder Technology. 2020. V. 31. P. 2733. https://doi.org/10.1016/j.apt.2020.05.002
  35. HadiJafari P., Risberg M., Hesstrom J.G.I., Gebart B.R. // Energy Fuels. 2020. V. 34. P. 1870. https://doi.org/10.1021/acs.energyfuels.9b03942
  36. Chishty M.A., Umeki K., Risberg M., Wingren A., Gebart R. // Fuel Proc. Technol. 2021. V. 218. P. 106861. https://doi.org/10.1016/j.fuproc.2021.106861
  37. Козлов А.Н., Свищев Д.А., Худякова Г.И., Рыжков А.Ф. // ХТТ. 2017. № 4. С. 12. https://doi.org/10.7868/S0023117717040028 [Solid Fuel Chem. 2017. V. 51 P. 205. https://doi.org/10.3103/S0361521917040061]
  38. Han C., Situ Y., Zhu H. et al. // Chinese J. Chem. Eng. 2024. V. 68. P. 203. https://doi.org/10.1016/j.cjche.2023.12.010

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).