STRUCTURE AND REACTIVITY OF CELLULOSE UNDER MICROWAVE EXPOSURE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Optimization of the structure of cellobiose and cellodextrose using quantum chemistry methods has been carried out. Energy profiles of the initial stages of bond breaking in the cellobiose molecule have been calculated using the relaxed scanning method. The Morse potential was used to estimate the dissociation energies and equilibrium bond lengths. The average dissociation energy of bonds in the cellobiose molecule increases in the following order: O–H, C–OC, C(cycle)–C(cycle), C(cycle)–C, C(cycle)–OH, C–H, C(cycle)–H, C–OH. The largest deviation from the mean value is observed for the hydroxyl group (relative deviation is 6%). Experimental study of the effect of microwave radiation on microcrystalline cellulose revealed a decrease in the number of hydroxyl groups in the solid product.

About the authors

S. A Ananicheva

Institute of Applied Physics, Russian Academy of Sciences

Email: bulanova@ipfran.ru
Nizhny Novgorod, Russia

A. B Alyeva

Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

T. O Krapivnitskaya

Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

E. I Preobrazhensky

Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

S. V Zelentsov

Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky NNGU

Email: zelentsov@chem.unn.ru
Nizhny Novgorod, Russia

N. Yu Peskov

Institute of Applied Physics, Russian Academy of Sciences; Lobachevsky NNGU

Nizhny Novgorod, Russia

M. Yu Glyavin

Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

References

  1. Li B. et al. Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose // Fuel. 2021. Vol. 306. P. 121658.
  2. Нугманов О.К., Григорьева Н.П., Лебедев Н.А. Структурный анализ травяной целлюлозы // Химия растительного сырья. 2013. № 1. С. 29–37.
  3. Tiwari A., Sanjog J. Morphological, structural, and thermal properties of cellulose nanocrystals extracted from Indian water chestnut shells (agricultural waste) // Next Materials. 2025. Vol. 8. P. 100653.
  4. Nomura T., Minami E., Kawamoto H. High-speed camera observation of cellulose fast pyrolysis under infrared irradiation // J Anal Appl Pyrolysis. 2025. Vol. 189. P. 107102.
  5. Ouerhani M., Largeau J.-F. Thermal conversion of cellulose fiber under slow pyrolysis: Kinetics, thermodynamics and related chemical species // Bioresour Technol Rep. 2025. Vol. 30. P. 102110.
  6. Song J. et al. Conversion of glucose and cellulose into value-added products in water and ionic liquids // Green Chemistry. 2013. Vol. 15. № 10. P. 2619.
  7. Azadi P. et al. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts // Appl. Catal. B. 2012. Vol. 117–118. P. 330–338.
  8. Liu C. et al. Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems // Catalysts. 2020. Vol. 10. № 9.
  9. Mettler M.S. et al. Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates // Energy Environ Sci. 2012. Vol. 5., № 1. P. 5414–5424.
  10. Dai G. et al. Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation // Combust Flame. 2019. Vol. 208. P. 273–280.
  11. Zaichenko V.M., Lavrenov V.A., Faleeva Yu.M. Study of the Slow Pyrolysis of Lignin, Hemicellulose, and Cellulose and the Effect of Their Interaction in Plant Biomas // Химия твердого топлива. 2023. № 6. P. 66–74.
  12. Liu Y. et al. Comparative microwave catalytic pyrolysis of cellulose and lignin in nitrogen and carbon dioxide atmospheres // J Clean Prod. 2024. Vol. 437. P. 140750.
  13. Collard F.-X., Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin // Renewable and Sustainable Energy Reviews. 2014. Vol. 38. P. 594–608.
  14. Motasemi F., Afzal M.T. A review on the microwaveassisted pyrolysis technique // Renewable and Sustainable Energy Reviews. 2013. Vol. 28. P. 317–330.
  15. Namazi A.B., Allen D.G., Jia C.Q. Microwave-assisted pyrolysis and activation ofpulp mill sludge // Biomass Bioenergy. Elsevier Ltd, 2015. Vol. 73. P. 217–224.
  16. Yin C. Microwave-assisted pyrolysis of biomass for liquid biofuels production // Bioresource Technology. 2012. Vol. 120. P. 273–284.
  17. Rodriguez A.M. et al. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS) // ChemistryOpen. 2015. Vol. 4, № 3. P. 308–317.
  18. St. John P.C. et al. Prediction of organic hemolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost // Nat. Commun. 2020. Vol. 11. № 1. P. 2328.
  19. Lotliker S.U. et al. Accuracy of the new modified Morse potential energy function for ground and excited states of diatomic molecules // Physics Open. 2023. Vol. 16. P. 100159.
  20. Neese F. The ORCA program system // WIREs Computational Molecular Science. 2012. Vol. 2. № 1. P. 73–78.
  21. Гришаева Т.Н., Маслий А.Н. Сравнение производительности квантово-химических программных пакетов Gaussian 09, Orca 2. 8 и Priroda 11 на примере расчета структур комплексов никеля(II) и меди(II) // Вестник Казанского технологического университета. 2012. Vol. 15. № 2. C. 7–11.
  22. Kalenius E. et al. Size‐ and Structure‐Selective Noncovalent Recognition of Saccharides by Tetraethyl and Tetraphenyl Resorcinarenes in the Gas Phase // Chemistry – A European Journal. 2008. Vol. 14. № 17. P. 5220–5228.
  23. Krapivnitckaia T. et al. Theoretical and Experimental Demonstration of Advantages of Microwave Peat Processing in Comparison with Thermal Exposure during Pyrolysis // Processes. 2023. Vol. 12. № 1. P. 92

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).