🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Effect of the oxidation state of manganese in the manganese oxides used in the synthesis of Mn-substituted cordierite on the properties of the product


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Catalysts based on Mn-substituted cordierite 2MnO · 2Al2O3 · 5SiO2 have been synthesized using different manganese oxides (MnO, Mn2O3, and MnO2) at a calcination temperature of 1100°C. The catalysts differ in their physicochemical properties, namely, phase composition (cordierite content and crystallinity), manganese oxide distribution and dispersion, texture, and activity in high-temperature ammonia oxidation. The synthesis involving MnO yields Mn-substituted cordierite with a defective structure, because greater part of the manganese cations is not incorporated in this structure and is encapsulated and the surface contains a small amount of manganese oxides. This catalyst shows the lowest ammonia oxidation activity. The catalysts prepared using Mn2O3 or MnO2 are well-crystallized Mn-substituted cordierite whose surface contains different amounts of manganese oxides differing in their particle size. They ensure a high nitrogen oxides yield in a wide temperature range. The product yield increases with an increasing surface concentration of Mn3+ cations. The highest NOx yield (about 76% at 800–850°C) is observed for the MnO2-based catalyst, whose surface contains the largest amount of manganese oxides.

About the authors

E. F. Sutormina

Boreskov Institute of Catalysis, Siberian Branch

Author for correspondence.
Email: selena@catalysis.ru
Russian Federation, Novosibirsk, 630090

L. A. Isupova

Boreskov Institute of Catalysis, Siberian Branch

Email: selena@catalysis.ru
Russian Federation, Novosibirsk, 630090

L. M. Plyasova

Boreskov Institute of Catalysis, Siberian Branch

Email: selena@catalysis.ru
Russian Federation, Novosibirsk, 630090

L. S. Dovlitova

Boreskov Institute of Catalysis, Siberian Branch

Email: selena@catalysis.ru
Russian Federation, Novosibirsk, 630090

N. A. Rudina

Boreskov Institute of Catalysis, Siberian Branch

Email: selena@catalysis.ru
Russian Federation, Novosibirsk, 630090

V. A. Rogov

Boreskov Institute of Catalysis, Siberian Branch; Novosibirsk State University

Email: selena@catalysis.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.