INTERACTION OF GOLD AND NICKEL NANOPARTICLES WITH MOLECULAR HYDROGEN AND CARBON MONOXIDE IN THE PRESENCE OF AN ELECTRIC FIELD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A nanostructured gold–nickel coating has been synthesized on the surface of pyrolytic graphite. Its physicochemical properties have been studied by scanning tunneling microscopy and spectroscopy, Auger spectroscopy, mass spectrometry, and other methods. It has been found that the coating consists of clusters formed by gold and nickel nanoparticles. It has been shown that an electric field can inhibit or stimulate the adsorption of hydrogen on gold and the reduction of the oxidized surface of nickel nanoparticles with carbon monoxide. The mechanisms of the influence of the field on the chemical processes involving H2 and CO are different. Quantum-chemical simulation has made it possible to determine the values of the energy barriers for CO adsorption on nickel nanoparticles.

About the authors

M V GRISHIN

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

A K GATIN

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

E K GOLUBEV

Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 117393, Москва, ул. Профсоюзная, д. 70

N. V. DOKHLIKOVA

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

S. A. OZERIN

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

S. YU. SARVADI

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

I. G. STEPANOV

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

V. G. SLUTSKII

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

V. A. KHARITONOV

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

B. R. SHUB

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4

References

  1. Roldan Cuenya B. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects // Thin Solid Films. 2010. V. 518. № 12. P. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
  2. Gerasimov G.N., Ikim M.I., Gromov V.F., Ilegbusi O.J., Trakhtenberg L.I. Chemical modification of impregnated SnO2–In2O3 nanocomposites due to interaction of sensor components // Journal of Alloys and Compounds. 2021. V. 883. P. 160817. https://doi.org/10.1016/j.jallcom.2021.160817
  3. Wang X., Tang F., Qi X., Lin Z., Battocchi D., Chen X. Enhanced protective coatings based on nanopartic-le fullerene C60 for oil & gas pipeline corrosion mitigation // Nanomaterials. 2019. V. 9. № 10. P. 1476. https://doi.org/10.3390/nano9101476
  4. Chopani S.M.H., Asadi S., Heravi M.M. Application of bimetallic and trimetallic nanoparticles supported on graphene as novel heterogeneous catalysts in the reduction of nitroarenes, homo-coupling, Suzuki-Miyaura and Sonogashira reactions // Current Organic Chemistry. 2020. V. 24. № 19. P. 2216. https://doi.org/10.2174/1385272824999200914111559
  5. Keane M.A., Gomez-Quero S., Cardenas-Lizana F., Shen W. Alumina-supported Ni–Au: surface synergistic effects in catalytic hydrodechlorination // ChemCatChem. 2009. V. 1. № 2. P. 270. https://doi.org/10.1002/cctc.200900070
  6. Yuan G., Louis C., Delannoy L., Keane M.A. Silica- and titania-supported Ni–Au: application in catalytic hydrodechlorination // J. Catal. 2007. V. 247. № 2. P. 256. https://doi.org/10.1016/j.jcat.2007.02.008
  7. Wu Z., Zhao Z., Zhang M. Synthesis by replacement reaction and application of TiO2-supported Au–Ni bimetallic catalyst // ChemCatChem. 2010. V. 2. № 12. P. 1606. https://doi.org/10.1002/cctc.201000165
  8. Cardenas-Lizana F., Gomez-Quero S., Jacobs G., Ji Y., Davis B.H., Kiwi-Minsker L., Keane M.A. Alumina supported Au–Ni: surface synergism in the gas phase hydrogenation of nitro-compounds // J. Phys. Chem. C. 2012. V. 116. № 20. P. 11166. https://doi.org/10.1021/jp3025528
  9. Cardenas-Lizana F., Keane M.A. Gas phase selective hydrogenation over oxide supported Ni–Au // Phys. Chem. Chem. Phys. 2015. V. 17. № 42. P. 28088. https://doi.org/10.1039/c5cp00282f
  10. Wei H., Wei X., Yang X., Yin G., Wang A., Liu X., Huang Y., Zhang T. Supported Au−Ni nano-alloy catalysts for the chemoselective hydrogenation of nitroarenes // Chinese Journal of Catalysis. 2015. V. 36. № 2. P. 160. https://doi.org/10.1016/S1872-2067(14)60254-0
  11. Nikolaev S.A., Smirnov V.V. Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites // Catal. Today. 2009. V. 147. P. S336. https://doi.org/10.1016/j.cattod.2009.07.032
  12. Aguilar-Tapia A., Delannoy L., Louis C., Han C.W., Ortalan V., Zanella R. Selective hydrogenation of 1,3-butadiene over bimetallic Au–Ni/TiO2 catalysts prepared by deposition-precipitation with urea // J. Catal. 2016. V. 344. P. 515. https://doi.org/10.1016/j.jcat.2016.10.025
  13. Chai M., Liu X., Li L., Pei G., Ren Y., Su Y., Cheng H., Wang A., Zhang T. SiO2-supported Au–Ni bimetallic catalyst for the selective hydrogenation of acetylene // Chin. J. Catal. 2017. V. 38. № 8. P. 1338. https://doi.org/10.1016/S1872-2067(17)62869-9
  14. Ruppert A.M., Jedrzejczyk M., Potrzebowska N., Kazmierczak K., Brzezinska M., Sneka-Platek O., Sautet P., Keller N., Michel C., Grams J. Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source // Catal. Sci. Technol. 2018. V. 8. № 17. P. 4318. https://doi.org/10.1039/C8CY00462E
  15. Wang F., Zhang J.-C., Li W.-Z., Chen B.-H. Coke-resistant Au–Ni/MgAl2O4 catalyst for direct methanation of syngas // J. Energy Chem. 2019. V. 39. P. 198. https://doi.org/10.1016/j.jechem.2019.03.028
  16. Chin Y.-H., King D.L., Roh H.-S., Wang Y., Heald S.M. Structure and reactivity investigations on supported bimetallic Au−Ni catalysts used for hydrocarbon steam reforming // J. Catal. 2006. V. 244. Iss. 2. P. 153. https://doi.org/10.1016/j.jcat.2006.08.016
  17. Molenbroek A.M., Nørskov J.K., Clausen B.S. Structure and Reactivity of Ni−Au Nanoparticle Catalysts // J. Phys. Chem. B. 2001. V. 105. № 23. P. 5450. https://doi.org/10.1021/jp0043975
  18. Grishin M.V., Gatin A.K., Dokhlikova N.V., Kirsankin A.A., Kulak A.I., Nikolaev S.A., Shub B.R. Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles // Kinetics and Catalysis. 2015. V. 56. № 4. P. 532. https://doi.org/10.1134/S0023158415040084
  19. Grishin M.V., Gatin A.K., Sarvadii S.Y., Shub B.R. Study of adsorption and interaction of H2, O2, and CO on the surface of single gold nanoparticles and nickel by scanning tunneling microscopy // Nanotechnologies in Russia. 2017. V 12. № 11–12. P. 589. https://doi.org/10.1134/S1995078017060040
  20. Gatin A.K., Grishin M.V., Sarvadii S.Y., Shub B.R. Interaction of gaseous reagents on gold and nickel nanoparticles // Russian Journal of Physical Chemistry B. 2018. V. 12. № 2. P. 317. https://doi.org/10.1134/S1990793118020069
  21. Aragonès A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield N.J., Wallace G.G., Diez-Perez I., Coote M.L. Electrostatic catalysis of a Diels–Alder reaction // Nature. 2016. V. 531. P. 88. https://doi.org/10.1038/nature16989
  22. Martín L., Molins E., Vallribera A. Tuning and enhancement of the Mizoroki–Heck reaction using polarized Pd nanocomposite carbon aerogels // New J. Chem. 2016. V. 40. Iss. 12. P. 10208. https://doi.org/10.1039/C6NJ02279K
  23. Sarvadiy S.Y., Gatin A.K., Grishin M.V., Kharitonov V.A., Kolchenko N.N., Dokhlikova N.V., Shub B.R. Electric field–prevented adsorption of hydrogen on supported gold nanoparticles // Gold Bulletin. 2019. V. 52. № 2. P. 61. https://doi.org/10.1007/s13404-019-00253-1
  24. Sarvadii S.Y., Gatin A.K., Kharitonov V.A., Dokhlikova N.V., Ozerin S.A., Grishin M.V., Shub B.R. Effect of CO molecule orientation on the reduction of Cu-based nanoparticles // Nanomaterials. 2021. V. 11. № 2. 279. https://doi.org/10.3390/nano11020279
  25. Binnig G., Rohrer H., Berber C., Weibel E. Tunneling through a controllable vacuum gap // Appl. Phys. Lett. 1982. V. 40. № 2. P. 178. https://doi.org/10.1063/1.92999
  26. Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy. Berlin: Springer, 2004.
  27. Hamers R.J., Wang Y.J. Atomically-resolved studies of the chemistry and bonding at silicon surfaces // Chemical Reviews. 1996. V. 96. № 4. P. 1261. https://doi.org/10.1021/cr950213k
  28. Hamers R.J., Tromp R.M., Demuth J.E. Surface electronic structure of Si (111)–(7 × 7) resolved in real space // Phys. Rev. Let. 1986. V. 56. № 8. P. 1972. https://doi.org/10.1103/PhysRevLett.56.1972
  29. Schintke S., Messerli S., Pivetta M., Patthey F., Libioulle L., Stengel M., De Vita A., Schneider W.-D. Insulator at the ultrathin limit: MgO on Ag(001) // Phys. Rev. Let. 2002. V. 87. № 27. P. 276801. https://doi.org/10.1103/PhysRevLett.87.276801
  30. Kovalevskii S., Dalidchik F., Grishin M., Kolchenko N., Shub B. Scanning tunneling spectroscopy of vibrational transitions // Appl. Phys. A. 1998. V. 66. P. S125. https://doi.org/10.1007/s003390051114
  31. Irwin M.D., Buchholz D.B., Hains A.W., Chang R.P.H., Marks T.J. p -Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 8. P. 2783. https://doi.org/10.1073/pnas.0711990105
  32. Divi S., Chatterjee A. Generalized nano-thermodynamic model for capturing size-dependent surface segregation in multi-metal alloy nanoparticles // RSC Advances. 2018. V. 8. P. 10409. https://doi.org/10.1039/C8RA00945G
  33. Dey S., Mehta N.S. Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: a review // Chemical Engineering Journal Advances. 2020. V. 1. 100008. https://doi.org/10.1016/j.ceja.2020.100008
  34. Grishin M.V., Gatin A.K., Kharitonov V.A., Ozerin S.A., Sarvadii S.Yu., Shub B.R. Interaction of gases with single clusters of gold and copper-based nanoparticles in the presence of electric fields // Russian Journal of Physical Chemistry B. 2022. V. 16. № 2. P. 211. https://doi.org/10.1134/S199079312232001X
  35. Vesecky S.M., Xu X., Goodman D.W. Infrared study of CO on NiO(100) // Journal of Vacuum Science & Technology A. 1994. V. 12. № 4. P. 2114. https://doi.org/10.1116/1.579146
  36. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., de Gironcoli S., Delu-gas P., DiStasio Jr. R.A., Ferretti A., Floris A., Fratesi G., Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H.-Y., Kokalj A., Küçükbenli E., Lazzeri M., Marsili M., Marzari N., Mauri F., Nguyen N.L., Nguyen H.-V., Otero-de-la-Roza A., Paulatto L., Poncé S., Rocca D., Sabatini R., Santra B., Schlipf M., Seitsonen A.P., Smogunov A., Timrov I., Thonhauser T., Umari P., Vast N., Wu X., Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO // J. Phys. Condens. Matter. 2009. V. 21. P. 395502. https://doi.org/10.1088/1361-648X/aa8f79
  37. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77. №. 18. P. 3865.
  38. Perdew J., Ruzsinsky A., Csonka G.I., Vydrov O.A., Scuseria G.E., Constantin L.A., Zhou X., Burke K. Restoring the density-gradient expansion for exchange in solids and surfaces // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  39. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism // Phys. Rev. B. 1990. V. 41. № 11. P. 7892. https://doi.org/10.1103/PhysRevB.41.7892

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (563KB)
3.

Download (130KB)
4.

Download (110KB)
5.

Download (133KB)
6.

Download (94KB)
7.

Download (755KB)

Copyright (c) 2023 М.В. Гришин, А.К. Гатин, Е.К. Голубев, Н.В. Дохликова, С.А. Озерин, С.Ю. Сарвадий, И.Г. Степанов, В.Г. Слуцкий, В.А. Харитонов, Б.Р. Шуб

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».