Investigation of the effect of intermittency of the turbulent field on particle acceleration in the plasma sheet of the Earth's magnetotail
- Authors: Levashov N.N.1, Popov V.Y.1,2,3, Malova H.V.1,2, Zelenyi L.M.1
-
Affiliations:
- Space Research Institute
- Lomonosov Moscow State University
- HSE University
- Issue: Vol 63, No 2 (2025)
- Pages: 131-139
- Section: Articles
- URL: https://journal-vniispk.ru/0023-4206/article/view/294116
- DOI: https://doi.org/10.31857/S0023420625020015
- EDN: https://elibrary.ru/GOLPZL
- ID: 294116
Cite item
Abstract
Using a numerical model, the influence of intermittency on the acceleration of particles in the equatorial plane of the Earth's magnetotail was studied. For comparison with observational data, we selected the event of July 17, 2001, when plasma flows with velocities of up to 400 km/s and an amplitude of the turbulent magnetic field of the order of ten nT were observed in the plasma layer of the magnetotail for more than 10 minutes. Modeling of the electromagnetic field is carried out using a superposition of wavelets, which are distributed uniformly throughout the computational domain. By means of a special distribution of amplitudes, we ensure that the resulting field is multifractal and intermittent. It is shown that when accelerated in an intermittent field, the energy spectra of particles rise and flatten, which means that particles are able to gain more energy than when accelerated in a turbulent plasma layer without taking into account intermittency.
Full Text

About the authors
N. N. Levashov
Space Research Institute
Author for correspondence.
Email: nn.levashov@physics.msu.ru
Russian Federation, Moscow
V. Yu. Popov
Space Research Institute; Lomonosov Moscow State University; HSE University
Email: nn.levashov@physics.msu.ru
Lomonosov Moscow State University, Physical Faculty
Russian Federation, Moscow; Moscow; MoscowH. V. Malova
Space Research Institute; Lomonosov Moscow State University
Email: nn.levashov@physics.msu.ru
Scobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University
Russian Federation, Moscow; MoscowL. M. Zelenyi
Space Research Institute
Email: nn.levashov@physics.msu.ru
Russian Federation, Moscow
References
- Ковтюх А.С. Геокорона горячей плазмы // Косм. исслед. 2001. Т. 39. № 6. С. 563–596.
- Grigorenko E.E., Hoshino M., Hirai M. et al. ‘‘Geography’’ of ion acceleration in the magnetotail: X-line versus current sheet effects // J. Geophys. Res. 2009. V. 114. Iss. A3. A03203. https://doi.org/10.1029/2008JA013811
- Kronberg E.A., Grigorenko E.E., Turner D.L. et al. Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event // J. Geophys. Res. 2017. V. 122. P. 3055–3072.https://doi.org/10.1002/2016JA023551
- Schodel R., Baumjohann W., Nakamura R. et al. Rapid flux transport in the central plasma sheet // J. Geophys. Res. 2001. V. 106. P. 301–313.
- Vörös Z., Baumjohann W., Nakamura R. et al. Multi-scale magnetic field intermittence in the plasma sheet // Annales Geophysicae. 2004. V. 21. P. 1955–1964.https://doi.org/10.5194/angeo-21-1955-2003
- Zelenyi L.M., Rybalko S.D., Artemyev A.V. et al. Charged particle acceleration by intermittent electromagnetic turbulence // Geophys. Res. Lett. 2011. V. 38. Iss. 17.Art. ID. L17110.
- Левашов Н.Н., Попов В.Ю., Малова Х.В. и др. Моделирование турбулентности с перемежаемостью в космической плазме // Косм. исслед. 2022. Т. 60. № 1. С. 11–16. https://doi.org/10.31857/S0023420622010083
- Левашов Н.Н., Попов В.Ю., Малова Х.В. и др. Исследование процессов ускорения заряженных частиц в турбулентной космической плазме с перемежаемостью // Ученые записки физического факультета Московского Университета. 2021. № 4. C. 1–6.
- Frisch U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press, 1995.
- Volwerk M., Baumjohann W., Glassmeier K. et al. Compressional waves in the Earth’s neutral sheet // Annales Geophysicae. 2004. V. 22. P. 303–315.https://doi.org/10.5194/angeo-22-303-2004
- Lui A. Multifractal and intermittent nature of substorm-associated magnetic turbulence in the magnetotail // J. Atmospheric and Solar-Terrestrial Physics. 2001. V. 63. Iss. 13. P. 1379–1385.
- Левашов Н.Н., Попов В.Ю., Малова Х.В. и др. Моделирование мультифрактального турбулентного электромагнитного поля в космической плазме // Косм. исслед. 2023. Т. 61. № 2. С. 1–8.https://doi.org/10.31857/S0023420622100089
- Павлов А.Н., Анищенко В.С. Мультифрактальный анализ сигналов на основе вейвлетпреобразования // Известия Саратовского университета. 2007. Т. 7. № 1. С. 3–25.
- Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. Ижевск: НИЦ Регулярная и хаотическая динамика, 2001.
- Короленко П.В., Маганова М.С., Меснянкин А.В. Новационные методы анализа стохастических процессов и структур в оптике. Москва: НИИЯФ МГУ, 2004.
- Keith D.W., Pettit C.L., Vecherin S.N. Wavelet-based cascade model for intermittent structure in terrestrial environments // Data Analysis, Statistics and Probability. 2013. https://arxiv.org/abs/1312.5649
- Федер Е. Фракталы. Москва: Мир, 1991.
- Будаев В.П., Савин С.П., Зелёный Л.М. Наблюдения перемежаемости и обобщенного самоподобия в турбулентных пограничных слоях лабораторной и магнитосферной плазмы: на пути к определению количественных характеристик переноса // Успехи физических наук. 2011. Т. 181. № 9. С. 905–952.
- Зеленый Л.М., Зогин Д.В. Структура плазменного слоя магнитосферного хвоста Земли в экваториальной плоскости. Квазиадиабатическая модель // Физика космической плазмы: сб. тр. Киев: Наукова Думка, 1993.
- El-Alaoui M., Walker R., Weygand J. et al. Magnetohydrodynamic Turbulence in the Earth’s Magnetotail from Observations and Global MHD Simulations // Frontiers in Astronomy and Space Sciences. 2021. V. 8. Art.ID. 620519. https://doi.org/10.3389/fspas.2021.620519
- Borovsky J., Funsten H. MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation, and driving // J. Geophysical Research. 2003. V. 108. Iss. A7. 1284. https://doi.org/10.1029/2002JA009625
Supplementary files
