Catalogs of solar wind types and their role in solar-terrestrial physics
- Authors: Lodkina I.G.1, Yermolaev Y.I.1, Khokhlachev A.A.1
-
Affiliations:
- Space Research Institute, Russian Academy of Sciences
- Issue: Vol 63, No 2 (2025)
- Pages: 140-158
- Section: Articles
- URL: https://journal-vniispk.ru/0023-4206/article/view/294122
- DOI: https://doi.org/10.31857/S0023420625020022
- EDN: https://elibrary.ru/GOLEGY
- ID: 294122
Cite item
Abstract
The magnetosphere response to interplanetary drivers depends on their type. The reliability of their identification affects the сonclusions based on the analysis of the relationships between the solar wind and the magnetosphere. In this paper, we analyze the list of moderate and strong geomagnetic storms and their interplanetary sources for the period 2009–2019 presented by Qiu S. et al. It is shown that some of the events in this list were defined incorrectly, and their interpretation differs in ~20 % of cases from our catalog by Yermolaev et al. (http://www.iki.rssi.ru/omni/) for the solar wind types Sheath, ICME, and CIR, and in ~28 % of cases from the Richardson and Cane catalog for ICME. Using the uncorrected list of Qiu S. et al. can lead to incorrect identification of interplanetary drivers of magnetic storms and false conclusions. It is recommended to use the classification of interplanetary drivers from catalogs of events accepted by the scientific community as reference ones.
Full Text

About the authors
I. G. Lodkina
Space Research Institute, Russian Academy of Sciences
Author for correspondence.
Email: irina-priem@mail.ru
Russian Federation, Moscow
Yu. I. Yermolaev
Space Research Institute, Russian Academy of Sciences
Email: yermol@iki.rssi.ru
Russian Federation, Moscow
A. A. Khokhlachev
Space Research Institute, Russian Academy of Sciences
Email: irina-priem@mail.ru
Russian Federation, Moscow
References
- Зеленый Л.М., Веселовский И.С. Плазменная гелиогеофизика. М.: Физ-матлит, 2008. Т. 1. 672 с.; Т. 2. 560 с.
- Зеленый Л.М., Петрукович А.А., Веселовский И.С. Современные достижения в плазменной гелиогеофизике. М.: ИКИ РАН, 2016. 672 с.
- Dungey J.W. Interplanetary Magnetic Field and the Auroral Zones // Phys. Rev. Lett. 1961. V. 6. P. 47–48.
- Fairfield D.H., Cahill L.J. The transition region magnetic field and polar magnetic disturbances // J. Geophys. Res. 1966. V. 71. P. 155–169.
- Rostoker G., Falthammar C.-G. Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface // J. Geophys. Res. 1967. V. 72. P. 5853–5863.
- Russell C.T., McPherron R.L., Burton R.K. On the cause of magnetic storms // J. Geophys. Res. 1974. V. 79. P. 1105–1109.
- Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst // J. Geophys. Res. 1975. V. 80. P. 4204–4214.
- Tsurutani B.T., Gonzalez W.D. The interplanetary Causes of Magnetic Storms: A Review // Magnetic Storms / Eds. Tsurutani B.T., Gonzalez W.D., Kamide Y. Washington: American Geophysical Union Press, 1997. P. 77–89.
- Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Sci. Rev. 1999. V. 88. P. 529–562.
- Yermolaev Y.I., Yermolaev M.Y., Zastenker G.N. et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: A review // Planet. Space Sci. 2005. V. 53. P. 189–196.
- Yermolaev Y.I., Yermolaev M.Y. Solar and Interplanetary Sources of Geomagnetic Storms: Space Weather Aspects // Izvestiya, Atmospheric and Oceanic Physics. 2010. V. 46. Iss. 7. P. 799–819.
- Temmer M. Space weather: The solar perspective // Living Rev. Sol. Phys. 2021. V. 18. Iss. 4.
- Eselevich V.G., Fainshtein V.G. An investigation of the relationship between the magnetic storm Dst indexes and different types of solar wind streams // Ann. Geophys. 1993. V. 11. P. 678–684.
- Huttunen K.E.J., Koskinen H.E.J., Schwenn R. Variability of magnetospheric storms driven by different solar wind perturbations // J. Geophys. Res. 2002. V. 107.
- Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms // J. Geophys. Res. 2006. V. 111. Iss. A7. Art. ID. A07S08.
- Pulkkinen T.I., Partamies N., Huttunen K.E.J. et al. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions // Geophys. Res. Lett. 2007. V. 34. Iss. 2. L02105.
- Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G. et al. Relative occurrence rate and geoeffectiveness of large-scale types of the solar wind // Cosm. Res. 2010. V. 48. P. 1–30.
- Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G. et al. Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis // Ann. Geophys. 2010. V. 28. P. 2177–2186.
- Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G. et al. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms // J. Geophys. Res. 2012. V. 117. Art. ID. A00L007.
- Nikolaeva N., Yermolaev Y., Lodkina I. Predicted dependence of the cross polar cap potential saturation on the type of solar wind stream // Adv. Space Res. 2015. V. 56. P. 1366–1373.
- Despirak I.V., Lyubchich A.A., Kleimenova N.G. Solar Wind Streams of Different Types and High-Latitude Substorms // Geomagn. Aeron. 2019. V. 59. P. 1–6.
- Dremukhina L.A., Yermolaev Y.I., Lodkina I.G. Dynamics of Interplanetary Parameters and Geomagnetic Indices during Magnetic Storms Induced by Different Types of Solar Wind // Geomagn. Aeron. 2019. V. 59. P. 639–650.
- Yermolaev Y.I., Lodkina I.G., Dremukhina L.A. et al. What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers // Universe. 2021. V. 7. Iss. 5.Art. ID. 138. https://doi.org/10.3390/universe7050138
- King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data // J. Geophys. Res. 2004. V. 110. Iss. A2. Art. ID. A02209. https://doi.org/10.1029/2004JA010804
- Hutchinson J.A., Wright D.M., Milan S.E. Geomagnetic storms over the last solar cycle: A superposed epoch analysis // J. Geophys. Res. 2011. V. 116. Art. ID. A09211. https://doi.org/10.1029/2011JA016463
- Pandya M., Veenadhar B., Ebihara Y. et al. Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations // JGR Space Physics. 2019. https://doi.org/10.1029/2019JA026771
- Shen X.-C., Hudson M.K., Jaynes A. et al. Statistical study of the storm time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms // J. Geophys. Res. Space Physics. 2017. V. 122. P. 8327–8339. https://doi.org/10.1002/2017JA024100
- Ogawa Y., Seki K., Keika K. et al. Characteristics of CME- and CIR-driven ion upflows in the polar ionosphere // JGR Space Physics. 2019. V. 124. P. 3637–3649.
- Kataoka R., Miyoshi Y. Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions // Space Weather. 2006. V. 4. S09004. https://doi.org/10.1029/2005SW000211
- Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S. et al. Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere // Cosmic Res. 2017. V. 55. Iss. 3. P. 178–189.
- Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G. et al. Catalog of Large-Scale Solar Wind Phenomena during 1976–2000 // Cosm. Res. 2009. V. 47. P. 81–94.
- Qiu S., Zhang Z., Yousof H. et al. The interplanetary origins of geomagnetic storm with ≤ –50 nT during solar cycle 24 (2009–2019) // Advances in Space Research. 2022. V. 70. Iss. 7. P. 2047–2057.https://doi.org/10.1016/j.asr.2022.06.025
- Shen C.Y. Wang Z., Pan B. et al. Full-halo coronal mass ejections: Arrival at the Earth // J. Geophys. Res. Space Physics. 2014. V. 119. P. 5107–5116.https://doi.org/10.1002/2014JA020001
- Richardson I.G., Cane H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties // Sol. Phys. 2010. V. 264. P. 189–237. https://doi.org/10.1007/s11207-010-9568-6
- Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S. et al. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIR vs. Sheath and MC vs. Ejecta // Sol. Phys. 2017. V. 292. 193. https://doi.org/10.1007/s11207-017-1205-1
- Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S. et al. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis // J. Geophys. Res.: Space Phys. 2015. V. 120. Iss. 9. P. 7094–7106. https://doi.org/10.1002/2015JA021274
- Nikolaeva N., Yermolaev Y., Lodkina I. Modeling the time behavior of the index during the main phase of magnetic storms generated by various types of solar wind // Adv. Space Res. 2013. V. 6. P. 401–412. https://doi.org/10.1134/S0010952513060038
- Seki K., Keika K., Ebihara Y. Characteristics of CME- and CIR-driven ion upflows in the polar ionosphere // JGR Space Physics. 2019. V. 124. P. 3637–3649. https://doi.org/10.1029/2018JA025870
Supplementary files
