Catalogs of solar wind types and their role in solar-terrestrial physics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The magnetosphere response to interplanetary drivers depends on their type. The reliability of their identification affects the сonclusions based on the analysis of the relationships between the solar wind and the magnetosphere. In this paper, we analyze the list of moderate and strong geomagnetic storms and their interplanetary sources for the period 2009–2019 presented by Qiu S. et al. It is shown that some of the events in this list were defined incorrectly, and their interpretation differs in ~20 % of cases from our catalog by Yermolaev et al. (http://www.iki.rssi.ru/omni/) for the solar wind types Sheath, ICME, and CIR, and in ~28 % of cases from the Richardson and Cane catalog for ICME. Using the uncorrected list of Qiu S. et al. can lead to incorrect identification of interplanetary drivers of magnetic storms and false conclusions. It is recommended to use the classification of interplanetary drivers from catalogs of events accepted by the scientific community as reference ones.

Full Text

Restricted Access

About the authors

I. G. Lodkina

Space Research Institute, Russian Academy of Sciences

Author for correspondence.
Email: irina-priem@mail.ru
Russian Federation, Moscow

Yu. I. Yermolaev

Space Research Institute, Russian Academy of Sciences

Email: yermol@iki.rssi.ru
Russian Federation, Moscow

A. A. Khokhlachev

Space Research Institute, Russian Academy of Sciences

Email: irina-priem@mail.ru
Russian Federation, Moscow

References

  1. Зеленый Л.М., Веселовский И.С. Плазменная гелиогеофизика. М.: Физ-матлит, 2008. Т. 1. 672 с.; Т. 2. 560 с.
  2. Зеленый Л.М., Петрукович А.А., Веселовский И.С. Современные достижения в плазменной гелиогеофизике. М.: ИКИ РАН, 2016. 672 с.
  3. Dungey J.W. Interplanetary Magnetic Field and the Auroral Zones // Phys. Rev. Lett. 1961. V. 6. P. 47–48.
  4. Fairfield D.H., Cahill L.J. The transition region magnetic field and polar magnetic disturbances // J. Geophys. Res. 1966. V. 71. P. 155–169.
  5. Rostoker G., Falthammar C.-G. Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface // J. Geophys. Res. 1967. V. 72. P. 5853–5863.
  6. Russell C.T., McPherron R.L., Burton R.K. On the cause of magnetic storms // J. Geophys. Res. 1974. V. 79. P. 1105–1109.
  7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst // J. Geophys. Res. 1975. V. 80. P. 4204–4214.
  8. Tsurutani B.T., Gonzalez W.D. The interplanetary Causes of Magnetic Storms: A Review // Magnetic Storms / Eds. Tsurutani B.T., Gonzalez W.D., Kamide Y. Washington: American Geophysical Union Press, 1997. P. 77–89.
  9. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Sci. Rev. 1999. V. 88. P. 529–562.
  10. Yermolaev Y.I., Yermolaev M.Y., Zastenker G.N. et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: A review // Planet. Space Sci. 2005. V. 53. P. 189–196.
  11. Yermolaev Y.I., Yermolaev M.Y. Solar and Interplanetary Sources of Geomagnetic Storms: Space Weather Aspects // Izvestiya, Atmospheric and Oceanic Physics. 2010. V. 46. Iss. 7. P. 799–819.
  12. Temmer M. Space weather: The solar perspective // Living Rev. Sol. Phys. 2021. V. 18. Iss. 4.
  13. Eselevich V.G., Fainshtein V.G. An investigation of the relationship between the magnetic storm Dst indexes and different types of solar wind streams // Ann. Geophys. 1993. V. 11. P. 678–684.
  14. Huttunen K.E.J., Koskinen H.E.J., Schwenn R. Variability of magnetospheric storms driven by different solar wind perturbations // J. Geophys. Res. 2002. V. 107.
  15. Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms // J. Geophys. Res. 2006. V. 111. Iss. A7. Art. ID. A07S08.
  16. Pulkkinen T.I., Partamies N., Huttunen K.E.J. et al. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions // Geophys. Res. Lett. 2007. V. 34. Iss. 2. L02105.
  17. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G. et al. Relative occurrence rate and geoeffectiveness of large-scale types of the solar wind // Cosm. Res. 2010. V. 48. P. 1–30.
  18. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G. et al. Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis // Ann. Geophys. 2010. V. 28. P. 2177–2186.
  19. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G. et al. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms // J. Geophys. Res. 2012. V. 117. Art. ID. A00L007.
  20. Nikolaeva N., Yermolaev Y., Lodkina I. Predicted dependence of the cross polar cap potential saturation on the type of solar wind stream // Adv. Space Res. 2015. V. 56. P. 1366–1373.
  21. Despirak I.V., Lyubchich A.A., Kleimenova N.G. Solar Wind Streams of Different Types and High-Latitude Substorms // Geomagn. Aeron. 2019. V. 59. P. 1–6.
  22. Dremukhina L.A., Yermolaev Y.I., Lodkina I.G. Dynamics of Interplanetary Parameters and Geomagnetic Indices during Magnetic Storms Induced by Different Types of Solar Wind // Geomagn. Aeron. 2019. V. 59. P. 639–650.
  23. Yermolaev Y.I., Lodkina I.G., Dremukhina L.A. et al. What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers // Universe. 2021. V. 7. Iss. 5.Art. ID. 138. https://doi.org/10.3390/universe7050138
  24. King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data // J. Geophys. Res. 2004. V. 110. Iss. A2. Art. ID. A02209. https://doi.org/10.1029/2004JA010804
  25. Hutchinson J.A., Wright D.M., Milan S.E. Geomagnetic storms over the last solar cycle: A superposed epoch analysis // J. Geophys. Res. 2011. V. 116. Art. ID. A09211. https://doi.org/10.1029/2011JA016463
  26. Pandya M., Veenadhar B., Ebihara Y. et al. Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations // JGR Space Physics. 2019. https://doi.org/10.1029/2019JA026771
  27. Shen X.-C., Hudson M.K., Jaynes A. et al. Statistical study of the storm time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms // J. Geophys. Res. Space Physics. 2017. V. 122. P. 8327–8339. https://doi.org/10.1002/2017JA024100
  28. Ogawa Y., Seki K., Keika K. et al. Characteristics of CME- and CIR-driven ion upflows in the polar ionosphere // JGR Space Physics. 2019. V. 124. P. 3637–3649.
  29. Kataoka R., Miyoshi Y. Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions // Space Weather. 2006. V. 4. S09004. https://doi.org/10.1029/2005SW000211
  30. Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S. et al. Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere // Cosmic Res. 2017. V. 55. Iss. 3. P. 178–189.
  31. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G. et al. Catalog of Large-Scale Solar Wind Phenomena during 1976–2000 // Cosm. Res. 2009. V. 47. P. 81–94.
  32. Qiu S., Zhang Z., Yousof H. et al. The interplanetary origins of geomagnetic storm with Dstmin ≤ –50 nT during solar cycle 24 (2009–2019) // Advances in Space Research. 2022. V. 70. Iss. 7. P. 2047–2057.https://doi.org/10.1016/j.asr.2022.06.025
  33. Shen C.Y. Wang Z., Pan B. et al. Full-halo coronal mass ejections: Arrival at the Earth // J. Geophys. Res. Space Physics. 2014. V. 119. P. 5107–5116.https://doi.org/10.1002/2014JA020001
  34. Richardson I.G., Cane H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties // Sol. Phys. 2010. V. 264. P. 189–237. https://doi.org/10.1007/s11207-010-9568-6
  35. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S. et al. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIR vs. Sheath and MC vs. Ejecta // Sol. Phys. 2017. V. 292. 193. https://doi.org/10.1007/s11207-017-1205-1
  36. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S. et al. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis // J. Geophys. Res.: Space Phys. 2015. V. 120. Iss. 9. P. 7094–7106. https://doi.org/10.1002/2015JA021274
  37. Nikolaeva N., Yermolaev Y., Lodkina I. Modeling the time behavior of the Dst index during the main phase of magnetic storms generated by various types of solar wind // Adv. Space Res. 2013. V. 6. P. 401–412. https://doi.org/10.1134/S0010952513060038
  38. Seki K., Keika K., Ebihara Y. Characteristics of CME- and CIR-driven ion upflows in the polar ionosphere // JGR Space Physics. 2019. V. 124. P. 3637–3649. https://doi.org/10.1029/2018JA025870

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Time course of the parameters of the interplanetary medium and magnetospheric indices from August 27 to September 3, 2017 (see description in the text). Event No. 134 from the list [32], with a minimum at 12:00 on August 31, 2017 with Dst = –50 nT, according to the catalog [31] falls within the Ejecta interval

Download (920KB)
3. Fig. 2. The same as in Fig. 1. Event No. 66 of the list [32], with a minimum on 09.XI.2013 09:00 with Dst = –80 nT, according to the catalog [31] falls on the Sheath interval

Download (928KB)
4. Fig. 3. The same as in Fig. 1. Event No. 58 of the list [32], with a minimum of MB at 10.VII.2013 22:00 with Dst = –56 nT, according to the catalog [31] falls on the Ejecta interval

Download (943KB)
5. Fig. 4. The same as in Fig. 1. Event No. 39 of the list [32], with a minimum of MB on 3.IX.2012 11:00 with Dst = –69 nT, according to the catalog [31] falls on the Sheath interval

Download (924KB)
6. Fig. 5. Same as in Fig. 1. Event No. 22 of the list [32], with a minimum of MB on 25.I.2012 11:00 with Dst = –75 nT, according to the catalog [31] falls within the CIR interval

Download (953KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».