ION RING CURRENT ON THE RECOVERY PHASE OF MAGNETIC STORMS
- Authors: Kovtyukh A.S.1
-
Affiliations:
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- Issue: Vol 63, No 6 (2025)
- Pages: 624–643
- Section: Articles
- URL: https://journal-vniispk.ru/0023-4206/article/view/361958
- DOI: https://doi.org/10.7868/S3034550225060058
- ID: 361958
Cite item
Abstract
Based on the results of measurements near the equatorial plane of fluxes and spectra of H+ and O+ ions of the magnetospheric ring current (RC) on the Explorer-45, AMPTE/CCE, CRRES and Van Allen Probes satellites, a systematic analysis of the spatial distributions of the energy density of these ions on the recovery phase of magnetic storms was carried out. Nine storms of varying intensity were considered, with max|Dst| from 59 to 307 nT. The radial profile of the ion energy density of the RC is characterized by the position of its maximum (Lm) and by the ratio of the ion energy density and the magnetic field at this maximum (βm), and at L > Lm this profile is approximated by the dependence w(L) = w0 exp(−L/L0). The distributions of the parameter Lm depending on the index Dst and on MLT, as well as the parameters βm, w0 and L0 depending on Dst, MLT and Lm were obtained. For H+ and O+ ions, as well as for low-energy (E < 60 keV) and higher-energy ions, these distributions are different, which is associated with different loss rates of these ions. It is shown that for the RC protons, the average values of the parameters Lm and βm usually increase as the recovery phase develops, and the dependence Lm(Dst) is significantly stronger than in the main phase of storms. During strong storms, on the fast recovery phase, the average value of the L0 parameter for H+ ions with E ≈ 1−300 keV decreases from ~1.7 to ~1.4 (dominance of the RC symmetrization effect by MLT), and for O+ ions of the same energies, L0 increases from ~0.9 to ~1.2 (dominance of the RC ion losses). According to the estimates made, on the slow recovery phase of strong storms, a significant contribution, from 30 to 50 %, to the total energy of the ion RC can be related to the region on 7 ≤ L ≤ 10. It is shown that for some storms the contribution of the RC ions at L ≤ 10 to the Dst value is well described by the Dessler–Parker–Sckopke relation, but in other measurements considered here, especially during very strong storms, the contribution of the RC to the Dst value is no more than 40–60 %, and the rest is the part of other magnetospheric current systems.
About the authors
A. S. Kovtyukh
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: kovtyukhas@mail.ru
Moscow, Russia
References
- Gloeckler G., Hamilton D.C. AMPTE ion composition results // Phys. Scripta. 1987. V. 18. P. 73–84. https://doi.org/10.1088/0031–8949/1987/T18/009
- Daglis I.A., Thorne R.M., Baumjohann W., Orsini S. The terrestrial ring current: Origin, formation, and decay // Rev. Geophys. 1999. V. 37. Iss. 4. P. 407–438. https://doi.org/10.1029/1999RG900009
- Ковтюх А.С. Геокорона горячей плазмы // Космич. исслед. 2001. Т. 39. № 6. С. 563–596. (= Kovtyukh A.S. Geocorona of hot plasma // Cosmic Res. 2001. V. 39. Iss. 6. P. 527–558. https://doi.org/10.1023/A:1013074126604)
- Keika K., Kistler L.M., Brandt P.C. Energization of O+ ions in the Earth’s inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms // J. Geophys. Res. Space Phys. 2013. V. 118. Iss. 7. P. 4441–4464. https://doi.org/10.1002/jgra.50371
- Williams D.J., Lyons L.R. The proton ring current and its interaction with the plasmapause: Storm recovery phase // J. Geophys. Res. 1974. V. 79. Iss. 28. P. 4195–4207. https://doi.org/10.1029/JA079i028p04195
- Williams D.J., Lyons L.R. Further aspects of the proton ring current interaction with the plasmapause: Main and recovery phases // J. Geophys. Res. 1974. V. 79. Iss. 31. P. 4791–4796. https://doi.org/10.1029/JA079i031p04791
- Kistler L.M., Ipavich F.M., Hamilton D.C. et al. Energy spectra of the major ion species in the ring current during geomagnetic storms // J. Geophys. Res. 1989. V. 94. Iss. A4. P. 3579–3599. https://doi.org/10.1029/JA094iA04p03579
- Ковтюх А.С. Радиальный профиль давления буревого кольцевого тока как функция Dst // Космич. исслед. 2010. Т. 48. № 3. С. 218–238. (= Kovtyukh A.S. Radial profile of pressure in a storm ring current as a function of Dst // Cosmic Res. 2010. V. 48. Iss. 3. P. 211–231. https://doi.org/10.1134/S0010952510030032)
- Ковтюх А.С. Параметризация пространственно-энергетических распределений ионов H+ и O+ кольцевого тока на главной фазе магнитных бурь // Геомагнетизм и аэрономия. 2024. Т. 64. № 4. С. 529–547. https://doi.org/10.31857/S0016794024040087 (= Kovtyukh A.S. Parametrization of Spatial-Energy Distributions of H+ and O+ Ions of the Ring Current on the Main Phase of Magnetic Storms // Geomagnetism and Aeronomy. 2023. V. 63. Suppl. 1. P. S110–S127. https://doi.org/10.1134/S001679322360114X)
- Smith P.H., Hoffman R.A. Ring current particle distributions during the magnetic storms of December 16–18, 1971 // J. Geophys. Res. 1973. V. 78. Iss. 22. P. 4731–4737. https://doi.org/10.1029/JA078i022p04731
- Fritz T.A., Smith P.H., Williams D.J. et al. Initial observations of magnetospheric boundaries by Explorer 45 (S³) // Correlated Interplanetary and Magnetospheric Observations. Ed. D.E. Page / Astrophys. Space Sci. Library. Dordrecht, Holland: D. Reidel Publ. Co. 1974. V. 42. P. 485–506. https://doi.org/10.1007/978-94-010-2172-2_31
- Berko F., Cahill L., Jr., Fritz T. Protons as the prime contributors to storm time ring current // J. Geophys. Res. 1975. V. 80. Iss. 25. P. 3549–3552. https://doi.org/10.1029/JA080i025p03549
- Hoffman R.A., Cahill L.J., Jr., Anderson R.R. et al. Explorer 45 (S³-A) observations of the magnetosphere and magnetopause during the August 4–6, 1972, magnetic storm period // J. Geophys. Res. 1975. V. 80. Iss. 31. P. 4287–4296. https://doi.org/10.1029/JA080i031p04287
- Hamilton D.C., Gloeckler G., Ipavich F.M. et al. Ring current development during the great geomagnetic storm of February 1986 // J. Geophys. Res. 1988. V. 93. Iss. 12. P. 14343–14355. https://doi.org/10.1029/JA093iA12p14343
- Kozyra J.U., Liemohn M.W., Clauer C.R. et al. Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm // J. Geophys. Res. 2002. V. 107. Iss. A8. Art.ID. 1224. https://doi.org/10.1029/2001JA000023
- Menz A.M., Kistler L.M., Moulkis C.G. et al. The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm // J. Geophys. Res. Space Phys. 2017. V. 122. Iss. 1. P. 475–492. https://doi.org/10.1002/2016JA023358
- Zhao H., Li X., Baker D.N. et al. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements // J. Geophys. Res. Space Phys. 2015. V. 120. Iss. 9. P. 7493–7511. https://doi.org/10.1002/2015JA021533
- Yue C., Borinik J., Li W. et al. Oxygen ion dynamics in the Earth's ring current: Van Allen Probes observations // J. Geophys. Res. Space. Phys. 2019. V. 124. Iss. 10. P. 7786–7798. https://doi.org/10.1029/2019JA026801
- McPherron R.L., O'Brien T.P. Predicting geomagnetic activity: The Dst index // Space Weather. Eds. P. Song, H.J. Singer, G.L. Siscoe / Geoph. Monog. Series. Washington, D. C.: AGU. 2001. V. 125. P. 339–345. https://doi.org/10.1029/GM125p0339
- Siscoe G.L., McPherron R.L., Jordanova V.K. Diminished contribution of ram pressure to Dst during magnetic storms // J. Geophys. Res. 2005. V. 110. Iss. A12. Art.ID. A12227. https://doi.org/10.1029/2005JA011120
- Kistler L.M., Moulkis C.G., Spence H.E. et al. The source of O+ in the storm time ring current // J. Geophys. Res. Space Phys. 2016. V. 121. Iss. 6. P. 5333–5349. https://doi.org/10.1002/2015JA022204
- Keika K., Seki K., Nose M. et al. Three-step buildup of the 17 March 2015 storm ring current: Implication for the cause of the unexpected storm intensification // J. Geophys. Res. Space Phys. 2018. V. 123. Iss. 1. P. 414–428. https://doi.org/10.1002/2017JA024462
- Sheldon R.B., Hamilton D.C. Ion transport and loss in the Earth's quiet ring current: I. Data and standard model // J. Geophys. Res. 1993. V. 98. Iss. A8. P. 13491–13508. https://doi.org/10.1029/92JA02869
- Ma L., Yu Y., Liu W. et al. Simulating the ring current proton dynamics in response to radial diffusion by ultra-low-frequency (ULF) waves // Geophys. Res. Lett. 2024. V. 51. Iss. 6. Art.ID. e2023GL107326. https://doi.org/10.1029/2023GL107326
- Cahill L.J., Jr., Lee Y.C. Development of four magnetic storms in February 1972 // Planet. Space Sci. 1975. V. 23. Iss. 9. P. 1279–1292. https://doi.org/10.1016/0032–0633(75)90151–8
- Krimigis S.M., Gloeckler G., McEntire R.M. et al. Magnetic storm of September 4, 1984: A synthesis of ring current spectra and energy densities measured with AMPTE/CCE // Geophys. Res. Lett. 1985. V. 12. Iss. 5. P. 329–332. https://doi.org/10.1029/GL012i005p00329
- Anderson R.R., Gurnett D.A. Plasma wave observations near the plasmapause with the S³-A satellite // J. Geophys. Res. 1973. V. 78. Iss. 22. P. 4756–4764. https://doi.org/10.1029/JA078i022p04756
- Dessler A.J., Parker E.N. Hydromagnetic theory of geomagnetic storms // J. Geophys. Res. 1959. V. 64. Iss. 12. P. 2239–2252. https://doi.org/10.1029/JZ064i012p02239
- Sckopke N. A general relation between the energy of trapped particles and the disturbance field near the Earth // J. Geophys. Res. 1966. V. 71. Iss. 13. P. 3125–3130. https://doi.org/10.1029/JZ071i013p03125
- Акасофу С.-И., Чепмен С. Солнечно-земная физика. Часть 2. М.: Мир, 1975. 512 с. (= Akasofu S.-I., Chapman S. Solar-Terrestrial Physics. Oxford Univ. Press. NY. 1972. 624 p.)
- Langel R.A., Estes R.H. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field // J. Geophys. Res. 1985. V. 90. Iss. B3. P. 2487–2494. https://doi.org/10.1029/JB090iB03p02487
- Sckopke N. A study of self-consistent ring current models // Cosmic Electrodynamics. 1972. V. 3. P. 330–348.
- Carovillano R.L., Siscoe G.L. Energy and momentum theorems in magnetospheric dynamics // Rev. Geophys. Space Phys. 1973. V. 11. Iss. 2. P. 289–353. https://doi.org/10.1029/RG011i002p00289
- Vasyliūnas V.M. Ionospheric and boundary contributions to the Dessler-Parker-Sckopke formula for Dst // Ann. Geophys. 2006. V. 24. Iss. 3. P. 1085–1097. https://doi.org/10.5194/angeo-24-1985-2006
- Шабанский В.П. Явления в околоземном пространстве. М.: Наука, 1972. 272 с.
- Zhao H., Li X., Baker D.N. et al. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements // J. Geophys. Res. Space Phys. 2016. V. 121. Iss. 4. P. 3333–3346. https://doi.org/10.1002/2016JA022358
- Kennel C.F., Petschek H.E. Limit on stably trapped particle fluxes // J. Geophys. Res. 1966. V. 71. Iss. 1. P. 1–28. https://doi.org/10.1029/JZ071i001p00001
- Greenspan M.E., Hamilton D.C. A test of the Dessler-Parker-Sckopke relation during magnetic storms // J. Geophys. Res. 2000. V. 105. Iss. A3. P. 5419–5430. https://doi.org/10.1029/1999JA000284
- Yang Y.Y., Shen C., Dunlop M. et al. Storm time current distribution in the inner equatorial magnetosphere: THEMIS observations // J. Geophys. Res. Space Phys. 2016. V. 121. Iss. 6. P. 5250–5259. https://doi.org/10.1002/2015JA022145
- Редерер Х. Динамика радиации, захваченной геомагнитным полем. М.: Мир, 1972. 192 с. (= Roederer J.G. Dynamics of Geomagnetically Trapped Radiation. New York: Springer, 1970.)
- Вовченко В.В., Антонова Е.Е. Нелинейное возмущение дипольного поля осесимметричным распределением плазмы // Геомагнетизм и аэрономия. 2010. Т. 50. № 6. С. 768–777. (= Vovchenko V.V., Antonova E.E. Nonlinear disturbance of the dipole field by an axisymmetric plasma distribution // Geomagnetism and Aeronomy. 2010. V. 50. Iss. 6. P. 739–748. https://doi.org/10.1134/S0016793210060058)
- Alexeev I.I., Belenkaya E.S., Kalegaev V.V. et al. Magnetic storms and magnetotail currents // J. Geophys. Res. 1996. V. 101. Iss. A4. P. 7737–7747. https://doi.org/10.1029/95JA03509
- Ganushkina N. Yu., Pulkkinen T.I., Kubyshkina M.V. et al. Long-term evolution of magnetospheric current systems during storms // Ann. Geophys. 2004. V. 22. Iss. 4. P. 1317–1334. https://doi.org/10.5194/angeo-22-1317-2004
- Kalegaev V.V., Ganushkina N. Yu., Pulkkinen T.I. et al. Relation between the ring current and the tail current during magnetic storms // Ann. Geophys. 2005. V. 23. Iss. 2. P. 523–533. https://doi.org/10.5194/angeo-23-523-2005
- Tsyganenko N.A., Simov M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 2005. V. 110. Iss. A3. Art.ID. A03208. https://doi.org/10.1029/2004JA010798
- Kalegaev V., Makarenkov E. Relative importance of ring and tail currents to Dst under extremely disturbed conditions // J. Atmos. Sol. Terr. Phys. 2008. V. 70. Iss. 2–4. P. 519–525. https://doi.org/10.1016/j.jastp.2007.08.029
- Ganushkina N. Yu., Liemohn M.W., Kubyshkina M.V. et al. Distortions of the magnetic field by storm-time current systems in Earth’s magnetosphere // Ann. Geophys. 2010. V. 28. Iss. 1. P. 123–140. https://doi.org/10.5194/angeo-28-123-2010
- Asikainen T., Maliniemi V., Marsula K. Modeling the contributions of ring, tail, and magnetopause currents to the corrected Dst index // J. Geophys. Res. Space Phys. 2010. V. 115. Iss. A12. Art.ID. A12203. https://doi.org/10.1029/2010JA015774
- Ganushkina N.Y., Liemohn M.W., Dubyagin S. et al. Defining and resolving current systems in geospace // Ann. Geophys. 2015. V. 33. Iss. 11. P. 1369–1402. https://doi.org/10.5194/angeo-33-1369-2015
Supplementary files


