Structural Reorganization of Cell Membrane Models Caused by the Anticancer Antibiotic Doxorubicin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The molecular mechanisms of the interaction of anticancer antibiotic doxorubicin with lipid cell membrane models have been investigated using grazing incidence X-ray diffraction (XRD) and X-ray reflectivity (XRR). The model systems were monolayers of four types of phospholipids, related to the main components of animal cell membranes. New information on the processes of damage of phospholipid monolayer lattice caused by doxorubicin is obtained. It is established that the action of doxorubicin on anionic phospholipid monolayers is determined by the electrostatic interaction: positively charged doxorubicin molecules are incorporated between negatively charged phospholipid functional groups. In the case of neutral phospholipids the key role belongs to the hydrophobic interaction: doxorubicin molecules are coordinated with phospholipid hydrocarbon tails in disordered regions.

About the authors

N. N. Novikova

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

M. V. Kovalchuk

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

A. V. Rogachev

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

Yu. N. Malakhova

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; MIREA—Rusian Technological University, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва; Россия, Москва

Yu. O. Kotova

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

S. E. Gelperina

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

S. N. Yakunin

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Author for correspondence.
Email: nn-novikova07@yandex.ru
Россия, Москва

References

  1. Brezesinski G., Möhwald H. // Adv. Colloid Int. Sci. 2003. V. 100. P. 563. https://doi.org/10.1016/s0001-8686(02)00071-4
  2. Stefaniu C., Brezesinski G. // Curr. Opin. Colloid Int. Sci. 2014. V. 19. P. 216. https://doi.org/10.1016/j.cocis.2014.01.004
  3. Kaganer V.M., Mohwald H., Dutta P. // Rev. Modern Phys. 1999. V. 71. № 3. P. 779. https://doi.org/10.1103/RevModPhys.71.779
  4. Daillant J., Gibaud A. X-ray and Neutron Reflectivity: Principles and Applications. Berlin: Springer, 2009. 348 p.
  5. Новикова Н.Н., Ковальчук М.В., Юрьева Э.А. и др. // Кристаллография. 2012. Т. 57. № 5. С. 727.
  6. Novikova N., Kovalchuk M., Konovalov O. et al. // BioNanoSci. 2021. V. 10. P. 618. https://doi.org/10.1007/s12668-020-00742-0
  7. Arcamone F., Cassinelli G., Fantini G. et al. // Biotechnol. Bioeng. 2000. V. 67. P. 704. https://doi.org/10.1002/bit.260110607
  8. Thorn C.F., Oshiro C., Marsh S. et al. // Pharmacogenet. Genomics. 2011. V. 21. P. 440. https://doi.org/10.1097/FPC.0b013e32833ffb56
  9. Sritharan S., Sivalingam N.A. // Life Sci. 2021. V. 278. P. 119527. https://doi.org/10.1016/j.lfs.2021.119527
  10. Asensio-L’opez M.C., Soler F., Pascual-Figal D. et al. // PLOS One. 2017. V. 12. P. e0172803. https://doi.org/10.1371/journal.pone.0172803
  11. Alves A.C., Magarkar A., Horta M. et al. // Sci. Rep. 2017. V. 7. P. 6343. https://doi.org/10.1038/s41598-017-06445-z
  12. Peetla C., Bhave R., Vijayaraghavalu S. et al. // Mol. Pharmaceutics. 2010. V. 7. P. 2334. https://doi.org/10.1021/mp100308n
  13. Dadhich R., Kapoor S. // Mol. Cell. Biochem. 2022. V. 477. P. 2507. https://doi.org/10.1007/s11010-022-04459-4
  14. Ramu A., Glaubiger D., Magrath I.T. et al. // Cancer Res. 1983. V. 43. P. 5533.
  15. Speelmans G., Staffhorst R.W., de Kruijff B. et al. // Biochemistry. 1994. V. 33. P. 13761. https://doi.org/10.1021/bi00250a029
  16. Chen L., Alrbyawi H., Poudel I. et al. // AAPS PharmSciTech. 2019. V. 20. P. 99. https://doi.org/10.1208/s12249-019-1316-0
  17. Alves A., Nunes C., Lima J. et al. // Colloids Surf. B. 2017. V. 160. P. 610. https://doi.org/10.1016/j.colsurfb.2017.09.058
  18. Yacoub T.J., Reddy A.S., Szleifer I. // Biophys. J. 2011. V. 101. P. 378. https://doi.org/10.1016/j.bpj.2011.06.015
  19. Hou Y., Li J., Liu X. et al. // Chem. Phys. 2021. V. 541. P. 111036.
  20. Matyszewska D., Moczulska S. // Electrochim. Acta. 2018. V. 280. P. 229. https://doi.org/10.1016/j.electacta.2018.05.119
  21. Gaber M.H., Ghannam M.M., Ali S.A. et al. // Biophys. Chem. 1998. V. 70. P. 223. https://doi.org/10.1016/S0301-4622(97)00125-7
  22. Marsh D. // Biochim. Biophys. Acta. 1996. V. 1286. P. 183. https://doi.org/10.1016/S0304-4157(96)00009-3
  23. Zameshin A., Makhotkin I.A., Yakunin S.N. et al. // J. Appl. Cryst. 2016. V. 49. P. 1300. https://doi.org/10.1107/S160057671601044X
  24. Kondratev O.A., Makhotkin I.A., Yakunin S.N. // Appl. Surf. Sci. 2022. V. 574. P. 151573. https://doi.org/10.1016/j.apsusc.2021.151573
  25. Malakhova Y.N., Korovin A.N., Lapkin D.A. et al. // Soft Matter. 2017. V. 13. P. 7300. https://doi.org/10.1039/c7sm01773a
  26. Windt D.L. // Comput. Phys. IEEE Comput. Sci. Eng. 1998. V. 12. P. 360. https://doi.org/10.1063/1.168689
  27. Xiao-Lin Zh., Sow-Hsin Ch. // Phys. Rev. E. 1993. V. 47. P. 3174. https://doi.org/10.1103/PhysRevE.47.3174
  28. Селеменев В.Ф., Рудакова Л.В., Рудаков О.Б. и др. Фосфолипиды на фоне природных матриц. Воронеж: Научная книга, 2020. 318 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (350KB)
3.

Download (753KB)
4.

Download (237KB)
5.

Download (224KB)
6.

Download (981KB)
7.

Download (197KB)
8.

Download (644KB)
9.

Download (348KB)

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».