Hyperspectral X-ray imaging for nanometrology

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A tool for X-ray hyperspectral imaging has been developed. It is based on a conventional CCD driven by an algorithm that allows resolution in both energy and position. A new algorithm has been developed that allows the real-time analysis of single photon events. The factors influencing the energy resolution, the formation of artifacts in the energy spectra, and the counting efficiency are analyzed. Furthermore, a method for achieving sub-pixel precision using the singular value decomposition is suggested. The algorithm has been tested on synthetic data and in a live experiment with the registration of X-ray fluorescence emission from a thin film structure. Applying hyperspectral imaging to grazing emission X-ray fluorescence opens up new possibilities in nanometrology.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Safonov

National Research Center “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: Safonov_AIg@nrcki.ru
Ресей, Moscow

K. Nikolaev

National Research Center “Kurchatov Institute”; Moscow Institute of Physics and Technology (State University)

Email: Safonov_AIg@nrcki.ru
Ресей, Moscow; Moscow

S. Yakunin

National Research Center “Kurchatov Institute”

Email: Safonov_AIg@nrcki.ru
Ресей, Moscow

Әдебиет тізімі

  1. Zegenhagen J., Kazimirov A. X-ray Standing Wave Technique, The Principles And Applications. World Scientific, 2013. V. 7.
  2. Ковальчук М.В., Новикова Н.Н., Якунин С.Н. // Природа. 2012. № 12. С. 3.
  3. Kossel W., Loeck V., Voges H. // Z. Phys. 1935. B. 94. № 1. S. 139. https://doi.org/10.1007/BF01330803
  4. Baumann J., Kayser Y., Kanngießer B. // Phys. Status Solidi. B. 2021. V. 258. № 3. P. 2000471.
  5. Bergmann U., Glatzel P. // Photosynth. Res. 2009. V. 102. P. 255. Https://doi.org/10.1007/s11120-009-9483-6
  6. Лидер В.В. // Успехи физ. наук. 2018. Т. 188. № 10. С. 1081. https://doi.org/10.3367/UFNr.2017.07.038174
  7. Schioppa E.J. The Color of X-Rays: Spectral X-Ray Computed Tomography using Energy Sensitive Pixel Detectors. Amsterdam U., 2014. № CERN-THESIS-2014–179.
  8. Lazzari O., Jacques S., Sochi T., Barnes P. // Analyst. 2009. V. 134. № 9. P. 1802. https://doi.org/10.1039/B901726G
  9. Hönicke P., Kayser Y., Nikolaev K.V. et al. // Small. 2022. V. 18. P. 2105776. https://doi.org/10.1002/smll.202105776
  10. Staeck S., Andrle A., Hönicke P. et al. // Nanomaterials. 2022. V. 12. P. 3766. https://doi.org/10.3390/nano12213766
  11. Skroblin D., Herrero A.F., Siefke T. et al. // Nanoscale. 2022. V. 14. № 41. P. 15475. https://doi.org/10.1039/D2NR03046B
  12. Maiden A.M., Morrison G.R., Kaulich B. et al. // Nat. Commun. 2013. V. 4. № 1. P. 1669. https://doi.org/10.1038/ncomms2640
  13. Batey D.J., Cipiccia S., Van Assche F. et al. // Sci. Rep. 2019. V. 9. № 1. P. 12278. https://doi.org/10.1038/s41598-019-48642-y
  14. Fröjdh E. Hybrid Pixel Detectors: Characterization and Optimization: Thesis. Mid Sweden University, 2015.
  15. Pennicard D., Lange S., Smoljanin S. et al. // J. Phys. Conf. Ser. 2013. V. 425. № 6. P. 062010. https://doi.org/10.1088/1742-6596/425/6/062010
  16. Catura R.C., Smithson R.C. // Rev. Sci. Instrum. 1979. V. 50. № 2. P. 219. https://doi.org/10.1063/1.1135790
  17. Bailey R., Damerell C.J.S., English R.L. et al. // Nucl. Instrum. Methods. 1983. V. 213. № 2–3. P. 201. https://doi.org/10.1016/0167-5087(83)90413-1
  18. Walton D., Stem R.A., Catura R.C. et al. // Proc. SPIE. 1984. V. 501. P. 306. https://doi.org/10.1117/12.944675
  19. Pinotti E., Bräuninger H., Findeis N. et al. // Nucl. Instrum. Methods Phys. Res. A. 1993. V. 326. № 1–2. P. 85. https://doi.org/10.1016/0168-9002(93)90337-H
  20. Hynecek J. // IEEE Trans. Electron Devices. 1992. V. 39. № 8. P. 1972. https://doi.org/10.1109/16.144694
  21. Turner M.J.L., Abbey A., Arnaud M. et al. // Astron. Astrophys. 2001. V. 365. № 1. P. L27. https://doi.org/10.1051/0004-6361:20000087
  22. Gendreau K.C. X-Ray CCDS for Space Applications: Calibration, Radiation Hardness, and Use for Measuring the Spectrum of the Cosmic X-Ray Background: Thesis. Massachusetts Institute of Technology, 1995.
  23. Baumann J., Gnewkow R., Staeck S. et al. // J. Anal. At. Spectrom. 2018. V. 33. № 12. P. 2043. https://doi.org/10.1039/C8JA00212F
  24. Allen F.G., Gobeli G.W. // Phys. Rev. 1962. V. 127. № 1. P. 150. https://doi.org/10.1103/PhysRev.127.150
  25. Tamm I. // Z. Phys. 1932. B. 76. № 11–12. S. 849. https://doi.org/10.1007/BF01341581
  26. El Gamal A., Eltoukhy H. // IEEE Circuit. Devic. 2005. V. 21. № 3. P. 6. https://doi.org/10.1109/MCD.2005.1438751
  27. Белоус Д.А. // Изв. вузов России. Радиоэлектроника. 2017. № 3. С. 60.
  28. Ильин А.А., Виноградов А.Н., Егоров В.В. и др. // Современные проблемы дистанционного зондирования Земли из космоса. 2013. Т. 10. № 3. С. 106.
  29. Юшкин М.В., Клочкова В.Г. Комплекс программ обработки эшелле-спектров. Препринт САО. 2004. № 206.
  30. Ишханов Б.С., Капитонов И.М., Кэбин Э.И. Частицы и ядра. Эксперимент. М.: МАКС Пресс, 2013. С. 260.
  31. Jakubek J. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 607. № 1. P. 192. https://doi.org/10.1016/j.nima.2009.03.148
  32. Prigozhin G., Butler N.R., Kissel S.E., Ricker G.R. // IEEE Trans. Electron Devices. 2003. V. 50. № 1. P. 246. https://doi.org/10.1109/TED.2002.806470
  33. Abboud A., Send S., Pashniak N. et al. // J. Instrum. 2013. V. 8. № 05. P. P05005. https://doi.org/10.1088/1748-0221/8/05/P05005
  34. Blaj G., Chang C.E., Kenney C.J. // AIP Conf. Proc. 2019. V. 2054. № 1. P. 060077. https://doi.org/10.1063/1.5084708
  35. Hernández G., Fernández F. // Appl. Phys. B. 2018. V. 124. P. 1. https://doi.org/10.1007/s00340-018-6982-1
  36. Shustov A.E., Ulin S.E. // Phys. Proc. 2015. V. 74. P. 399. https://doi.org/10.1016/j.phpro.2015.09.210
  37. Dutton T.E., Woodward W.F., Lomheim T.S. // P. Soc. Photo. Opt. Ins. 1998. V. 3301. P. 52. https://doi.org/10.1117/12.304568
  38. Тучин М.С., Бирюков А.В., Захаров А.И., Прохоров М.Е. // Механика, управление и информатика. 2013. № 13. С. 249.
  39. Christen F., Kuijken K., Baade D. et al. // Scientific Detectors for Astronomy 2005: Explorers of the Photon Odyssey. Dordrecht: Springer Netherlands, 2006. P. 543.
  40. Fumo P., Waldron E., Laine J.P., Evans G. // J. Astron. Telesc. Instrum. Syst. 2015. V. 1. № 2. P. 028002. https://doi.org/10.1117/1.JATIS.1.2.028002
  41. Старовойтов В.В. // Информатика. 2017. № 2. С. 70.
  42. Narwaria M., Lin W. // IEEE Trans. Systems, Man, Cybernetics. B. 2011. V. 42. № 2. P. 347. https://doi.org/10.1109/TSMCB.2011.2163391
  43. Gerbrands J.J. // Pattern Recognit. 1981. V. 14. № 1–6. P. 375. https://doi.org/10.1016/0031-3203(81)90082-0
  44. Jha S.K., Yadava R.D.S. // IEEE Sens. J. 2010. V. 11. № 1. P. 35. https://doi.org/10.1109/JSEN.2010.2049351
  45. Feller W. Courant Anniversary Volume. New York, 1948. P. 105.
  46. Evans R.D., Evans R.D. The Atomic Nucleus. New York: McGraw-Hill, 1955. P. 582.
  47. Lee S.H., Gardner R.P. // Appl. Radiat. Isot. 2000. V. 53. № 4–5. P. 731. https://doi.org/10.1016/S0969-8043(00)00261-X
  48. Patil A., Usman S. // Nucl. Technol. 2009. V. 165. № 2. P. 249. https://doi.org/10.13182/NT09-A4090
  49. Fano U. // Phys. Rev. 1947. V. 72. № 1. P. 26. https://doi.org/10.1103/PhysRev.72.26
  50. Abboud A., Send S., Pashniak N. et al. // J. Instrum. 2013. V. 8. P. P05005. https://doi.org/10.1088/1748-0221/8/05/P05005
  51. Kondratev O.A., Makhotkin I.A., Yakunin S.N. // Appl. Surf. Sci. 2022. V. 574. P. 151573. https://doi.org/10.1016/j.apsusc.2021.151573
  52. Nikolaev K.V., Safonov A.I., Kondratev O.A. et al. // J. Appl. Cryst. 2023. V. 56. № 5. P. 1435. https://doi.org/10.1107/S1600576723007112
  53. Solé V.A., Papillon E., Cotte M. et al. // Spectrochim. Acta. B. 2007. V. 62. № 1. P. 63. https://doi.org/10.1016/j.sab.2006.12.002

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Рис. 1. Блок-схема алгоритма, реализующего позиционно-чувствительный энергодисперсионный анализатор.

Жүктеу (212KB)
3. Fig. 2. Energy distribution of readout noise and the boron Kα line.

Жүктеу (148KB)
4. Fig. 3. Dependence of the energy distribution of the Kα line (8047 eV) and Kβ line (8905 eV) of copper on the row number (a) and in the extreme rows (b).

Жүктеу (113KB)
5. Fig. 4. Dependence of the registered photon flux (a) and counting efficiency (b) on the detector load.

Жүктеу (158KB)
6. Fig. 5. Spectra obtained from a series of simulated frames (squares are overlap peaks).

Жүктеу (204KB)
7. Fig. 6. Fluorescence spectrum of the W(3 nm)/Ti(16 nm)/W(3 nm) sample: asterisks are fluorescent lines of the experimental equipment, triangles are peaks of emission, squares are peaks of overlap.

Жүктеу (118KB)
8. Fig. 7. Hyperspectral image (a) and spatial distributions of the titanium Kα line doublet (b) and tungsten Lα1 line (c) on a CCD matrix.

Жүктеу (580KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».