Progress in crystal chemistry of new fumarole minerals discovered in 2014-2024 and their synthetic analogues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review highlights the key findings from the study of new anhydrous minerals discovered by the research team in the fumaroles of the Tolbachik volcano (Kamchatka) over the past decade. The synthesis conditions for analogues of these fumarole minerals and the distinctive features of their crystal chemistry are discussed. Special attention is given to minerals containing sulfate or vanadate anions, the discovery of which has led to the development of extensive families of inorganic compounds and materials with rich and intriguing crystal chemistry. A dedicated section focuses on advancements in high-temperature X-ray diffraction (HT XRD). Additionally, several rare topotactic single crystal-to-single crystal (SC-SC) transformations observed in vergasovaite and aleutite are described.

Full Text

Restricted Access

About the authors

I. O. Siidra

St. Petersburg University; Kola Science Centre RAS

Author for correspondence.
Email: o.siidra@spbu.ru

Institute of Earth Sciences

Russian Federation, St. Petersburg; Apatity

E. V. Nazarchuk

St. Petersburg University

Email: o.siidra@spbu.ru

Institute of Earth Sciences

Russian Federation, St. Petersburg

A. S. Borisov

Kiel University

Email: o.siidra@spbu.ru

Institute of Geosciences

Germany, Kiel

V. А. Ginga

Leipzig University

Email: o.siidra@spbu.ru

Institute of Solid State Physics

Germany, Leipzig

D. O. Nekrasova

St. Petersburg University

Email: o.siidra@spbu.ru

Institute of Earth Sciences

Russian Federation, St. Petersburg

References

  1. Главатских С.Ф., Набоко С.И. Постэруптивный метасоматоз и рудообразование. М.: Наука, 1983. 185 с.
  2. Федотов С.А. Большое трещинное Толбачинское извержение. Камчатка 1975–1976. М.: Наука, 1984. 637 с.
  3. Belousov A., Belousova M., Edwards B. et al. // J. Volcanol. Geotherm. Res. 2015. V. 307. P. 22. https://doi.org/10.1016/j.jvolgeores.2015.06.013
  4. Вергасова Л.П., Филатов С.К. // Вулканология и сейсмология. 2012. № 5. С. 3.
  5. Вергасова Л.П., Филатов С.К. // Вулканология и сейсмология. 2016. № 2. С. 3.
  6. Кривовичев С.В., Филатов С.К., Семенова Т.Ф. // Успехи химии. 1998. Т. 67. С. 155.
  7. Пеков И.В., Агаханов А.А., Зубкова Н.В. и др. // Геология и геофизика. 2020. Т. 61. С. 826. https://doi.org/10.15372/GiG2019167
  8. Pekov I.V., Koshlyakova N.N., Zubkova N.V. et al. // Eur. J. Mineral. 2018. V. 30. P. 305. https://doi.org/10.1127/ejm/2018/0030-2718
  9. Iveson A.A., Humphreys M.C.S., Jenner F.E. et al. // J. Petrol. 2022. V. 63. P. egac087. https://doi.org/10.1093/petrology/egac087
  10. Borisov A.S., Siidra O.I., Vlasenko N.S. // Chemie der Erde – Geochem. 2024. V. 84. P. 126179. https://doi.org/10.1016/j.chemer.2024.126179
  11. Филатов С.К., Вергасова Л.П. // Мінералогічний журн. 1983. Т. 3. С. 84.
  12. Филатов С.K. Высокотемпературная кристаллохимия. Теория, методы и результаты исследований. Л.: Недра, 1990. 288 с.
  13. Домнина М.И., Филатов С.К., Зюзюкина И.И., Вергасова Л.П. // Изв. АН СССР. Неорган. материалы. 1986. Т. 22. С. 1992.
  14. Krivovichev S.V., Mentré O., Siidra O.I. et al. // Chem. Rev. 2013. V. 113. P. 6459. https://doi.org/10.1021/cr3004696
  15. Rousochatzakis I., Richter J., Zinke R., Tsirlin A.A. // Phys. Rev. B. 2015. V. 91. P. 024416. https://doi.org/10.1103/PhysRevB.91.024416
  16. Fujihala M., Koorikawa H., Mitsuda S. et al. // J. Phys. Soc. Jpn. 2015. V. 84. P. 073702. https://doi.org/10.7566/JPSJ.84.073702
  17. Inosov D.S. // Adv. Phys. 2018. V. 67. P. 149. https://doi.org/10.1080/00018732.2018.1571986
  18. Pomjakushin V., Podlesnyak A., Furrer A., Pomjakushina E. // Phys. Rev. B. 2024. V. 109. P. 144409. https://doi.org/10.1103/physrevb.109.144409
  19. Vasiliev A., Volkova O., Zvereva E., Markina M. // npj Quant. Mater. 2018. V. 3. P. 18. https://doi.org/10.1038/s41535-018-0090-7
  20. Singh S., Neveu A., Jayanthi K. et al. // Dalton Trans. 2022. V. 51. P. 11169. https://doi.org/10.1039/D2DT01830F
  21. Gao Y., Zhang H., Liu X.-H. et al. // Adv. Energy Mater. 2021. V. 11. P. 2101751. https://doi.org/10.1002/aenm.202101751
  22. Siidra O.I., Nazarchuk E.V., Zaitsev A.N., Vlasenko N.S. // Mineral. Mag. 2020. V. 84. P. 283. https://doi.org/10.1180/mgm.2019.69
  23. Siidra O.I., Nazarchuk E.V., Agakhanov A.A. et al. // Mineral. Petrol. 2018. V. 112. P. 123. https://doi.org/10.1007/s00710-017-0520-4
  24. Siidra O.I., Nazarchuk E.V., Zaitsev A.N., Shilovskikh V.V. // Mineral. Mag. 2019. V. 84. P. 153. https://doi.org/10.1180/mgm.2019.68
  25. Siidra O.I., Nazarchuk E.V., Lukina E.A. et al. // Mineral. Mag. 2018. V. 82. P. 1079. https://doi.org/10.1180/minmag.2017.081.084
  26. Borisov A.S., Charkin D.O., Zagidullin K.A. et al. // Acta Cryst. В. 2022. V. 78. P. 499. https://doi.org/10.1107/S2052520622003535
  27. Nazarchuk E.V., Siidra O.I., Agakhanov A.A. et al. // Mineral. Mag. 2018. V. 82. P. 1233. https://doi.org/10.1180/minmag.2017.081.089
  28. Nekrasova D.O., Siidra O.I., Zaitsev A.N. et al. // Phys. Chem. Mineral. 2021. V. 48. P. 6. https://doi.org/10.1007/s00269-020-01132-4
  29. Borisov A.S., Siidra O.I., Kovrugin V.M. et al. // J. Appl. Cryst. 2021. V. 54. P. 237. https://doi.org/10.1107/S1600576720015824
  30. Nekrasova D.O., Mentré O., Siidra O.I. et al. // Dalton Trans. 2022. V. 51. P. 7878. https://doi.org/10.1039/D1DT04202E
  31. Siidra O.I., Lukina E.A., Nazarchuk E.V. et al. // Mineral. Mag. 2018. V. 82. P. 257. https://doi.org/10.1180/minmag.2017.081.037
  32. Kovrugin V.M., Nekrasova D.O., Siidra O.I. et al. // Cryst. Growth Des. 2019. V. 19. P. 1233. https://doi.org/10.1021/acs.cgd.8b01658
  33. Siidra O.I., Charkin D.O., Kovrugin V.M., Borisov A.S. // Acta Cryst. В. 2021. V. 77. P. 1003. https://doi.org/10.1107/S2052520621010350
  34. Siidra O.I., Nekrasova D.O., Charkin D.O. et al. // Mineral. Mag. 2021. V. 85. P. 831. https://doi.org/10.1180/mgm.2021.73
  35. Siidra O., Nekrasova D., Blatova O. et al. // Acta Cryst. В. 2022. V. 78. P. 153. https://doi.org/10.1107/S2052520622000919
  36. Siidra O.I., Nazarchuk E.V., Zaitsev A.N. et al. // Eur. J. Mineral. 2017. V. 29. P. 499. https://doi.org/10.1127/ejm/2017/0029-2619
  37. Nekrasova D.O., Tsirlin A.A., Colmont M. et al. // Phys. Rev. B. 2020. V. 102. P. 184405. https://doi.org/10.1103/PhysRevB.102.184405
  38. Nekrasova D.O., Tsirlin A.A., Colmont M. et al. // Inorg. Chem. 2021. V. 60. P. 18185. https://doi.org/10.1021/acs.inorgchem.1c02808
  39. Borisov A.S., Siidra O.I., Pimshin I.D. et al. // Struct. Chem. 2025. https://doi.org/10.1007/s11224-025-02450-5
  40. Nazarchuk E.V., Siidra O.I., Nekrasova D.O. et al. // Mineral. Mag. 2020. V. 84. P. 563. https://doi.org/10.1180/mgm.2020.33
  41. Борисов А.С., Сийдра О.И., Чаркин Д.О. и др. // Журн. структур. химии. 2024. Т. 65. С. 136344. https://doi.org/10.26902/JSC_id136344
  42. Siidra O.I., Nazarchuk E.V., Agakhanov A.A., Polekhovsky Y.S. // Mineral. Mag. 2019. V. 83. P. 847. https://doi.org/10.1180/mgm.2019.42
  43. Ginga V.A., Siidra O.I., Tsirlin A.A., Setzer A. // In preparation.
  44. Siidra O.I., Nazarchuk E.V., Zaitsev A.N. et al. // Mineral. Mag. 2019. V. 83. P. 749. https://doi.org/10.1180/mgm.2019.41
  45. Siidra O.I., Nazarchuk E.V., Pautov L.A. et al. // CNMNC Newsletter 70. Eur. J. Mineral. 2022. V. 34. P. 591. https://doi.org/10.5194/ejm-34-591-2022
  46. Siidra O.I., Nazarchuk E.V., Pautov L.A. et al. // CNMNC Newsletter 61. Eur. J. Mineral. 2021. V. 33. P. 299. https://doi.org/10.5194/ejm-33-299-2021
  47. Siidra O.I., Nazarchuk E.V., Pautov L.A. et al. // CNMNC Newsletter 64. Eur. J. Mineral. 2022. V. 34. P. 1. https://doi.org/10.5194/ejm-34-1-2022
  48. Vergasova L.P., Starova G.L., Krivovichev S.V. et al. // Can. Mineral. 1999. V. 37. P. 911.
  49. Ginga V.A., Siidra O.I., Tsirlin A.A., Setzer A. // Inorg. Chem. 2024. V. 63. P. 24573. https://doi.org/10.1021/acs.inorgchem.4c03694
  50. Bykova E.Y., Berlepsch P., Kartashov P.M. et al. // Schweiz. Mineral. Petrogr. Mitt. 1998. V. 78. P. 479.
  51. Nazarchuk E.V., Siidra O.I., Charkin D.O. et al. // Am. Mineral. 2024. V. 109. P. 471. https://doi.org/10.2138/am-2022-8753
  52. Pekov I.V., Zubkova N.V., Zelenski M.E. et al. // Mineral. Mag. 2013. V. 77. P. 107. https://doi.org/10.1180/minmag.2013.077.1.10
  53. Siidra O.I., Vladimirova V.A., Tsirlin A.A. et al. // Inorg. Chem. 2020. V. 59. P. 2136. https://doi.org/10.1021/acs.inorgchem.9b02565
  54. Giacovazzo C., Scandale E., Scordari F. // Z. Kristallogr. 1976. B. 144. S. 226. https://doi.org/10.1524/zkri.1976.144.16.226
  55. Вергасова Л.П., Филатов С.К., Серафимова Е.К., Старова Г.Л. // Докл. АН СССР. 1984. Т. 275. С. 714.
  56. Mereiter K. // Neues Jb. Miner. Monat. 1979. S. 182.
  57. Siidra O.I., Vergasova L.P., Krivovichev S.V. et al. // Mineral. Mag. 2014. V. 78. P. 1687. https://doi.org/10.1180/minmag.2014.078.7.12
  58. Dahmen T., Gruehn R. // Z. Kristallogr. 1993. V. 204. P. 57. https://doi.org/10.1524/zkri.1993.204.12.57
  59. Christidis P.C., Rentzeperis P.J. // Z. Kristallogr. 1976. V. 144. P. 341. https://doi.org/10.1524/zkri.1976.144.16.341
  60. Abbott R.N. // Am. Mineral. 1984. V. 69. P. 449.
  61. Slater P.R., Greaves C. // J. Mater. Chem. 1994. V. 4. P. 1469. https://doi.org/10.1039/JM9940401469
  62. Anantharamulu N., Koteswara Rao K., Rambabu G. et al. // J. Mater. Sci. 2011. V. 46. P. 2821. https://doi.org/10.1007/s10853-011-5302-5
  63. Wildner M., Giester G. // Mineral. Petrol. 1988. V. 39. P. 201. https://doi.org/10.1007/BF01163035
  64. Pekov I.V., Zubkova N.V., Agakhanov A.A. et al. // Eur. J. Mineral. 2017. V. 29. P. 323. https://doi.org/10.1127/ejm/2017/0029-2596
  65. Wildner M. // Z. Kristallogr. 1992. V. 202. P. 51. https://doi.org/10.1524/zkri.1992.202.1-2.51
  66. Burns P.C., Pluth J.J., Smith J.V. et al. // Am. Mineral. 2000. V. 85. P. 604. https://doi.org/10.2138/am-2000-0424
  67. Olmi F., Sabelli C., Trosti-Ferroni R. // Eur. J. Mineral. 1995. V. 7. P. 1331. https://doi.org/10.1127/ejm/7/6/1331
  68. Liebau F. Structural Chemistry of Silicates. Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985. 347 p.
  69. Hawthorne F.C., Krivovichev S.V., Burns P.C. // Rev. Mineral. Geochem. 2000. V. 40. P. 1. https://doi.org/10.1515/9781501508660-003
  70. Вергасова Л.П., Старова Г.Л., Филатов С.К., Ананьев В.В. // Докл. АН СССР. 1998. Т. 359. С. 804.
  71. Kornyakov I.V., Vladimirova V.A., Siidra O.I., Krivovichev S.V. // Molecules. 2021. V. 26. P. 1833. https://doi.org/10.3390/molecules26071833
  72. Siidra O.I., Vergasova L.P., Kretser Y.L. et al. // Mineral. Mag. 2014. V. 78. P. 1699. https://doi.org/10.1180/minmag.2014.078.7.13
  73. Krivovichev S.V., Vergasova L.P., Britvin S.N. et al. // Can. Mineral. 2007. V. 45. P. 921. https://doi.org/10.2113/gscanmin.45.4.921
  74. Starova G.L., Krivovichev S.V., Fundamensky V.S., Filatov S.K. // Mineral. Mag. 1997. V. 61. P. 441. https://doi.org/10.1180/minmag.1997.061.406.09
  75. Biesner T., Roh S., Pustogow A. et al. // Phys. Rev. B. 2022. V. 105. P. L060410. https://doi.org/10.1103/PhysRevB.105.L060410
  76. Siidra O.I., Krivovichev S.V., Armbruster T. et al. // Can. Mineral. 2007. V. 45. P. 445. https://doi.org/10.2113/gscanmin.45.3.445
  77. Ginga V.A., Siidra O.I., Firsova V.A. et al. // Phys. Chem. Mineral. 2022. V. 49. P. 38. https://doi.org/10.1007/s00269-022-01213-6
  78. Кривовичев С.В., Филатов С.К., Вергасова Л.П. // Зап. Рос. минерал. о-ва. 2015. Т. 144. С. 101.
  79. Mills S.J., Kampf A.R., Raudsepp M., Christy A.G. // Mineral. Mag. 2009. V. 73. P. 837. https://doi.org/10.1180/minmag.2009.073.5.837
  80. Mills S.J., Nestola F., Kahlenberg V. et al. // Am. Mineral. 2013. V. 98. P. 1966. https://doi.org/10.2138/am.2013.4587
  81. Burns P.C., Hawthorne F.C. // Can. Mineral. 1996. V. 34. P. 1089.
  82. Гинга В.А. “Кристаллохимия и свойства природных и синтетических ванадатов меди” Дис. ... канд. геол.-мин. наук. СПб.: СПбГУ, 2022.
  83. Shannon R.D., Calvo C. // J. Solid State Chem. 1973. V. 6. P. 538. https://doi.org/10.1016/S0022-4596(73)80012-X
  84. Hawthorne F.C., Oberti R. // Rev. Mineral. Geochem. 2007. V. 67. P. 1. https://doi.org/10.1515/9781501508523-002
  85. Winiarski M.J., Tran T.T., Chamorro J.R., McQueen T.M. // Inorg. Chem. 2019. V. 58. P. 4328. https://doi.org/10.1021/acs.inorgchem.8b03464
  86. Liu C., Chang T., Wang S. et al. // Chem. Mater. 2024. V. 36. P. 9516. https://doi.org/10.1021/acs.chemmater.4c01342
  87. Lacroix C., Mendels P., Mila F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Berlin: Springer, 2011. 682 p.
  88. Effenberger H. // Monatsh. Chem. 1985. V. 116. P. 927. https://doi.org/10.1007/BF00809186
  89. Pring A., Gatehouse B.M., Birch W.D. // Am. Mineral. 1990. V. 75. P. 1421.
  90. Krivovichev S.V., Filatov S.K., Vergasova L.P. // Mineral. Petrol. 2013. V. 107. P. 235. https://doi.org/10.1007/s00710-012-0238-2
  91. Pekov I.V., Britvin S.N., Krivovichev S.V. et al. // Am. Mineral. 2021. V. 106. P. 633. https://doi.org/10.2138/am-2020-7611
  92. Nazarchuk E.V., Siidra O.I., Filatov S.K. et al. // Phys. Chem. Mineral. 2023. V. 50. P. 11. https://doi.org/10.1007/s00269-023-01236-7
  93. Siidra O.I., Borisov A.S., Lukina E.A. et al. // Phys. Chem. Mineral. 2019. V. 46. P. 403. https://doi.org/10.1007/s00269-018-1011-9
  94. Hughes J.M., Hadidiacos C.G. // Am. Mineral. 1985. V. 70. P. 193.
  95. Scordari F., Stasi F. // Neues Jb. Miner. Abh. 1990. V. 161. P. 241.
  96. Вергасова Л.П., Филатов С.К., Серафимова Е.К., Вараксина Т.В. // Зап. Всесоюз. Минерал. о-ва. 1988. Т. 117. С. 459.
  97. Hawthorne F.C., Ferguson R.B. // Acta Cryst. B. 1975. V. 31. P. 1753. https://doi.org/10.1107/S0567740875006048
  98. Zelenski M.E., Zubkova N.V., Pekov I.V. et al. // Eur. J. Mineral. 2012. V. 24. P. 749. https://doi.org/10.1127/0935-1221/2012/0024-2221
  99. Birnie R.W., Hughes J.M. // Am. Mineral. 1979. V. 64. P. 941.
  100. Филатов С.К. // Зап. Всесоюз. Минерал. о-ва. 1982. Т. 116. С. 417.
  101. Филатов С.К. // Докл. АH СССР. 1985. Т. 280. С. 369.
  102. Aksenov S., Antonov A., Deyneko D. et al. // Acta Cryst. B. 2022. V. 78. P. 61. https://doi.org/10.1107/S2052520621009136

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Satellite image of the Tolbachik volcano and Tolbachinsky Dol, the numbers indicate the cinder cones of the Northern Breakthrough of the BTTI and the Naboko Cone of the TTI, where the described minerals originate (a). Photograph of the Second Cinder Cone and the fumarole field with active fumaroles Yadovita and Arsenatnaya (marked with an asterisk) (b). Section of the Yadovita fumarole according to data from [10] (c).

Download (947KB)
3. Fig. 2. Photographs of some high-temperature fumarolic minerals discovered by the authors: puninite Na2Cu3O(SO4)3 (a), glikinite Zn3O(SO4)2 (b), beloousovite KZn(SO4)Cl (c), paulgrothite Cu9Fe3+(PO4)4O4Cl (d), koryakite NaKMg2Al2(SO4)6 (d) and dokuchaevite Cu8O2(VO4)3Cl3 (e). All photographs were taken by the authors.

Download (599KB)
4. Fig. 3. Two strategies for synthesizing analogs of fumarole minerals (the synthesis simulates the temperature regimes of mineral formation in fumaroles): the method of chemical gas transport is the most productive for obtaining crystals of synthetic analogs of fumarole minerals and studying crystallochemical features; solid-phase synthesis is used to obtain bulk polycrystalline samples and study properties.

Download (153KB)
5. Fig. 4. Projection of the koryakite structure onto the ac plane (a) [22]. Layers that form the framework in the koryakite structure (b, c). Sulfate tetrahedra SO4 are here and below indicated in yellow.

Download (468KB)
6. Fig. 5. Projection of the germannianite structure along the a-axis (a) [23]. Packing and orientation (u – up; d – down)) of sulfate tetrahedra in the germannianite structure (b). Chains of CuO4O2 octahedra (long apical Cu–Oap bonds are shown by dashed lines) and ZnO6 octahedra (c). Graph showing the dependence of the Δoct × 103 parameter on the Cu : Zn ratio in the octahedral position in copper and zinc oxosalt minerals (d).

Download (158KB)
7. Fig. 6. Crystal structure of beloousovite (a), formed by Zn(SO4)Cl layers of apophyllite topology (b) [25]. Layers consisting of eight- and four-membered rings, including differently directed (u – up; d – down)) SO4 and ZnO3Cl tetrahedra (marked in green) (c). Increase in the corrugation angle of the beloousovite layer (d–e) with an increase in the radius of the alkali cation (from K to Cs) and the halogen anion (from Cl to I) [26].

Download (355KB)
8. Fig. 7. Framework of the crystal structure of itelmenite Na2CuMg2(SO4)4 [27], consisting of MO5, MO6 polyhedra and SO4 sulfate tetrahedra (a). Examples of crystal structures of new compounds of the itelmenite family with the general formula A+2M2+3(SO4)4: K2Cu3(SO4)4 [29] (b), Cs2Cd3(SO4)4 [26] (c).

Download (334KB)
9. Fig. 8. Projections of the crystal structures of new compounds of the itelmenite family [30]: Cs2Co3(SO4)4 (a), Cs2Ni3(SO4)4 (b), isostructural Rb2M3(SO4)4 (M = Co, Ni) (c).

Download (289KB)
10. Fig. 9. Framework crystal structure of saranchinaite Na2Cu(SO4)2 [31, 32] (a, b). Coordination environment [4+1+(2)] of four copper positions (c). Hydration of saranchinaite Na2Cu(SO4)2 in air and transformation into crankite Na2Cu(SO4)2 2H2O, which upon subsequent heating is transformed back into anhydrous Na2Cu(SO4)2 [31] (d).

Download (372KB)
11. Fig. 10. Crystal structures of new compounds of the sarchinaite morphotropic series A+2Cu(SO4)2: projections of the structures of K(Na,K)Na2[Cu2(SO4)4] [33] (a), KNaCu(SO4)2 [29] (b), Rb2Cu(SO4)2 [34] (c), Cs2Cu(SO4)2 [35] (d). CuOn polyhedra are shown in blue, and sulfate tetrahedra in yellow. Alkali metal cations are shown as spheres.

Download (346KB)
12. Fig. 11. Proposed scheme of formation of copper oxide substructures from the hypothetical litharge archetype in the puninite morphotropic series (a) [39]. Isolated dimers of [Cu6O2]4+ (OCu4 tetrahedra are shown in red) in the structures of puninite, euchlorine, and fedotovite (b). Inset of defective [OCu4]6+ tetrahedra (semitransparent) in the structure of Rb2Cu3O(SO4)3[Cu0.07O0.07] [38] (c). Hexameric isolated complexes in the structures of Cs4Cu7O3(SO4)6 (space group P2/a) [38] (d) and Cs4Cu7O3(SO4)6 (space group P1) [39] (e). Insertion of defective OCu4 tetrahedra between hexameric isolated complexes in the structure of Cs4Cu7O3(SO4)6[Cu0.2O0.2] [39] (e).

Download (337KB)
13. Fig. 12. Polyhedra in the structure of glykinite Zn3O(SO4)2 and the [OZn3]4+ chain (a) [40]. Comparison of the structural architectures of glykinite Zn3O(SO4)2 (b), new oxosulfate-molybdate Cu6O2(MoO4)3(SO4) (c) and vergasovaite Cu3O(MoO4)(SO4) (d) [41]. Molybdate tetrahedra MoO4 are shown in gray.

Download (238KB)
14. Fig. 13. Crystal structures of “Rb-chlorothionite” Rb2Cu(SO4)Cl2 [34] (a), “Rb-piipite” Rb4Cu4O2(SO4)4 (Cu+0.83Rb0.17Cl) [34] (b), and Cs2Co2(SO4)3 [35] – a representative of the family of compounds with langbeinite stoichiometry A2M2(SO4)3 (c). Oxo-centered OCu4 tetrahedra are shown in red.

Download (333KB)
15. Fig. 14. Formation of vanadates in the CuO–V2O5–CuCl2 system, colors correspond to the different phases obtained (a). Schematic representation of the growth of copper vanadate crystals by the chemical transport method in a sealed quartz ampoule (b).

Download (479KB)
16. Fig. 15. Coordination of cations in the crystal structure of aleutite Cu5O2(AsO4)(VO4)·(Cu0.50.5)Cl [42].

Download (170KB)
17. Fig. 16. Projection of the crystal structure of aleutite Cu5O2(AsO4)(VO4)·(Cu0.50.5)Cl [42] along the axes c (a) and b (b): the three-dimensional framework is formed by tetrahedral groups [OCu4]6+, (VO4)3– and (AsO4)3–, the channels in the framework are filled with metal cations in the M1 position and chlorine anions. Oxo-centered ribbons of [Cu5O2]6+, elongated along the b axis (c). Fragment of the crystal structure of aleutite, showing the relative position of Cu-centered polyhedra and six-membered rings of [Cu5O2]6+ from [OCu4] tetrahedra, united through common vertices and edges (d).

Download (430KB)
18. Fig. 17. Projection of the crystal structure of dokuchaevite Cu8O2(VO4)3Cl3 along the b-axis, showing the (VO4)3– tetrahedra and oxo-centered tetrahedra [OCu4]6+) (a) [44]. Comparison of the crystal structures of dokuchaevite (b) and yaroshevskite Cu9O2(VO4)4Cl2 [52] (c): vanadate groups are not shown for clarity of perception, the difference in the unit cell parameters of both minerals is shown.

Download (302KB)
19. Fig. 18. Crystal structure of the synthetic analogue of yarochevskite: along the b and axes (a), in the form of cation-centered polyhedra ((VO4)3– and Cu-centered tetrahedra) (b), oxo-centered tetrahedra [OCu4]6+ (c) [53].

Download (462KB)
20. Fig. 19. Arrangement of Cu1O4, Cu2O4Cl2, and Cu3O5Cl polyhedra in the structure of α-Cu4O2(VO4)Cl (space group Pbcm) (a) and the monoclinic polymorph β-Cu4O2(VO4)Cl (space group P2/n) (2) (b) [49]. Both packings are based on dimeric Cu6O2 units (top) of oxo-centered OCu4 tetrahedra linked by a common edge. The O1 atoms are in cis- and trans-positions in the coordination environment of the Cu1 and Cu2 atoms in the structures of α- and β-Cu4O2(VO4)Cl, respectively. The O1Cu4 tetrahedra are highlighted.

Download (265KB)
21. Fig. 20. Projection of the crystal structure of α-Cu4O2(VO4)Cl along the c-axis (the Cu–Cl bonds are shown by dashed lines) (a) [49]. The [O2Cu4]4+ chain formed by [OCu4]6+ tetrahedra (b). Projection of the crystal structure of α-Cu4O2(VO4)Cl along the c-axis with the [O2Cu4]4+ chains highlighted (c). The [O2Cu4]4+ layer in the structure of β-Cu4O2(VO4)Cl (d). Projection of the crystal structure of β-Cu4O2(VO4)Cl with channels filled with Cl– anions (the weak Cu–Cl bonds are shown by dashed lines) (e).

Download (460KB)
22. Fig. 21. Comparison of oxo complexes from [OCu4]6+ tetrahedra in the crystal structures of known natural and synthetic copper oxovanadate chlorides: yaroshevskite Cu9O2(VO4)4Cl2 [52] and dokuchaevite Cu8O2(VO4)3Cl3 [44] (a), coparsite α-Cu4O2(VO4)Cl [48, 49] (b), aleutite Cu5O2(AsO4)(VO4) (Cu0.50.5)Cl (c) [42], monoclinic polymorph of coparsite β-Cu4O2(VO4)Cl [49] (d), averievite Cu5O2(T5+O4)2 (MX) (e) [74, 78]. Dimers are shown as rectangles. Above are shown the Schlegel diagrams for the [OCu4]6+ tetrahedra, which are projections of the tetrahedra's edge networks onto the plane [49].

Download (155KB)
23. Fig. 22. Projections of the crystal structures of averievite (a) and dolerophanite (b) on the ab and ac planes (OCu4, VO4, SO4 tetrahedra are shown) [77, 88]. Changes in the cross-sections of thermal expansion tensors with increasing temperature in averievite (c) and dolerophanite (d).

Download (229KB)
24. Fig. 23. Sections of thermal expansion tensors of α-Cu4O2(VO4)Cl (a) and β-Cu4O2(VO4)Cl (b) in the temperature range of 25–550C [49]. Projections of both crystal structures are shown in Fig. 20.

Download (50KB)
25. Fig. 24. Evolution of powder diffraction patterns of yarochevskite with increasing temperature [77]. Decomposition products are labeled on the left.

Download (491KB)
26. Fig. 25. Sections of thermal expansion tensors of a synthetic analogue of yarochevskite with increasing temperature in the range of 25–800C [77]. The projection and fragments of the crystal structure of yarochevskite are shown in Fig. 18.

Download (19KB)
27. Fig. 26. Projection of the crystal structure of kamchatkite (a) and the [Cu3O]4+ chain framed by sulfate tetrahedra (b). Change in the cross-sections of thermal expansion tensors with increasing temperature in kamchatkite (c) [92].

Download (99KB)
28. Fig. 27. Change in the cross-sections of thermal expansion tensors of euchlorin with increasing temperature [93].

Download (12KB)
29. Fig. 28. Projections of the crystal structure of chalcokyanite (a). Coordination of copper atoms in the chalcokyanite structure (b). Change in the cross-sections of thermal expansion tensors with increasing temperature in chalcokyanite (c) [92].

Download (76KB)
30. Fig. 29. Changes in the cross-sections of thermal expansion tensors of saranchinaite (a) with increasing temperature in the range of 25–450°C and crankite (b) in the range of 25–200°C [31]. The projection and fragments of the crystal structure are shown in Fig. 9.

Download (5KB)
31. Fig. 30. Reconstruction of the reciprocal space of vergasovaite in the temperature range of 25–800°C [51]. For each reciprocal space pattern, a photograph of a vergasovaite crystal at different temperatures and an example of a diffraction pattern are presented. Note the change in the color of the crystal with increasing temperature and the appearance of a drop of melt.

Download (267KB)
32. Fig. 31. Temperature dependences of the unit cell parameters of vergasovaite (a) and its synthetic analogue (b) [51]. The points obtained in repeated experiments are shown in different colors.

Download (302KB)
33. Fig. 32. Projection of the crystal structure of vergasovaite (a). Change in the cross-sections of the thermal expansion tensors of vergasovaite with increasing temperature (b) [51].

Download (154KB)

Note

К 100-летию кафедры кристаллографии Санкт-Петербургского государственного университета


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».