SIMULATION OF HUANZALAITE MgWO4 BY THE METHOD OF INTERATOMIC POTENTIALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and properties of huanzalaite MgWO4 has been investigated by computer simulation study based on the method of empirical interatomic potentials. The results of simulation of structural, elastic and thermodynamic properties of MgWO4 and their comparison with available experimental data and ab initio calculations are presented.

About the authors

V. B Dudnikova

Lomonosov Moscow State University

Email: VDudnikova@hotmail.com
Moscow, Russia

E. V Zharikov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Moscow, Russia

N. N Eremin

Lomonosov Moscow State University; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)

Moscow, Russia; Moscow, Russia

References

  1. Zhang L., Huang Y., Sun S. et al. // J. Lumin. 2016. V. 169. P. 161. http://dx.doi.org/10.1016/j.jlumin.2015.08.078
  2. Zhang L., Loiko P., Serres J.M. et al. // J. Lumin. 2019. V. 213. P. 316. https://doi.org/10.1016/j.jlumin.2019.04.035
  3. Mikhailik V.B., Kraus H. // Phys. Status Solidi. B. 2010. V. 247. P. 1583. https://doi.org/10.1002/pssb.200945500
  4. Prasad M., Mondal M., Mukhopadhyay L.S. et al. // Mater. Today Proc. 2021. V. 46. P. 6388. https://doi.org/10.1016/j.matpr.2020.06.132
  5. Ichinose N. // Sens. Actuators B. 1993. V. 13–14. P. 100. https://doi.org/10.1016/0925-4005(93)85334-7
  6. Gouveia A.F., Vieira V.E.M., Sczancoski J.C. et al. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 2952. https://doi.org/10.1007/s10904-019-01435-2
  7. Hurley N., Srinivas S., Fang J. et al. // R. Soc. Open Sci. 2022. V. 9. 220994. https://doi.org/10.1098/rsos.220994
  8. Lin H., Zhang G., Zhang L. et al. // Opt. Express. 2017. V. 25. P. 11827. https://doi.org/10.1364/OE.25.011827
  9. Loiko P., Wang Y., Serres J.M. et al. // J. Alloys Compd. 2018. V. 763. P. 581. https://doi.org/10.1016/j.jallcom.2018.05.237
  10. Shionoya S., Yen W.M., Yamamoto H. Phosphor Handbook, CRC Press, 2nd ed., Boca Raton, 2007. 1080 p.
  11. Danevich F.A., Chernyak D.M., Dubovik A.M. et al. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 608. P. 107. http://dx.doi.org/10.1016/j.nima.2009.06.040
  12. Miyawaki R., Yokoyama K., Matsubara S. // Can. Mineral. 2010. V. 48. P. 105. http://dx.doi.org/10.3749/canmin.48.1.105
  13. Broch E. // Z. Phys. Chem. B. 1928. V. 1. P. 409. https://doi.org/10.1515/zpch-1928-0131
  14. Филипенко О.С., Победимская Е.А., Пономарев В.И., Белов Н.В. // Кристаллография 1968. Т. 13. С. 1073.
  15. Kravchenko V.B. // J. Struct. Chem. 1969. V. 10. P. 139. https://doi.org/10.1007/BF00751974
  16. Chang L.L.Y., Scroger M.G., Phillips B. // J. Am. Ceram. Soc. 1966. V. 49. P. 385. https://doi.org/10.1111/j.1151-2916.1966.tb13291.x
  17. Hildebrandt E., Kahlenberg V., Krüger H. et al. // J. Solid State Chem. 2023. V. 327. 124269. https://doi.org/10.1016/j.jssc.2023.124269
  18. Nagornaya L.L., Danevich F.A., Dubovik A.M. et al. // IEEE Trans. Nucl. Sci. 2009. V. 56. P. 2513. https://doi.org/10.1109/TNS.2009.2022268
  19. Gale J.D. // Z. Krist. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
  20. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // Кристаллография 2025. Т. 70. № 1. С. 3. https://doi.org/10.31857/S0023476125010012
  21. Ruiz-Fuertes J., Lopez-Moreno S., Errandonea D. et al. // J. Appl. Phys. 2010. V. 107. 083506. http://dx.doi.org/10.1063/1.3380848
  22. Macavei J., Schulz H. // Z. Krist. 1993. V. 207. P. 193. https://doi.org/10.1524/zkri.1993.207.Part-2.193
  23. Patnaik M., Yadav P., Rout E. et al. // Radiat. Phys. Chem. 2024 V. 223. 111957. https://doi.org/10.1016/j.radphyschem.2024.111957
  24. Крутяк Н.Р., Спасский Д.А., Сорокина Н.И. и др. // Кристаллография 2020. Т. 65. № 6. С. 871. https://doi.org/10.31857/S002347612006020X
  25. King E.G., Weller W.W. // U.S. Bureau of Mines Report of Investigations 5791. l96l.
  26. Chase Jr. M.W. // NIST–JANAF Thermochemical Tables. 4th Edition, J. Phys. Chem. Ref. Data. 1998. V. 9. Part 1. 1951 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).