EFFECT OF HIGH TEMPERATURE ON PROTEINASE K CRYSTALLIZATION PREDICTED BY MOLECULAR DYNAMICS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molecular dynamics simulations revealed a notable thermal stability of the precursor cluster of proteinase K crystals (a dimer formed prior to crystallization) within the 20–60°C temperature range. This finding led to the hypothesis that crystallization at an atypically elevated temperature (50–60°C) could be feasible. This theoretical prediction was subsequently confirmed experimentally: proteinase K crystals were successfully grown after incubation at 60°C. The results not only demonstrate the predictive power of the molecular dynamics approach employed here for identifying optimal protein crystallization conditions, but also open new opportunities for capturing the catalytically relevant conformation of proteinase K.

About the authors

Yu. V Kordonskaya

National Research Centre "Kurchatov Institute"

Email: yukord@mail.ru
Moscow, Russia

A. S Ustinova

National Research Centre "Kurchatov Institute"

Moscow, Russia

K. V Tikhonova

National Research Centre "Kurchatov Institute"

Moscow, Russia

S. Yu Silvestrova

Loginov Moscow Clinical Scientific Center

Moscow, Russia

M. A Marchenkova

National Research Centre "Kurchatov Institute"; Southern Federal University

Moscow, Russia; Rostov-on-Don, Russia

Yu. V Pisarevsky

National Research Centre "Kurchatov Institute"

Moscow, Russia

Yu. A Dyakova

National Research Centre "Kurchatov Institute"

Moscow, Russia

References

  1. Nakane T., Kotecha A., Sente A. et al. // Nature. 2020. V. 587. P. 152. https://doi.org/10.1038/s41586-020-2829-0
  2. Lengyel J., Hnath E., Storms M. et al. // J. Struct. Funct. Genomics. 2014. V. 15. P. 117. https://doi.org/10.1007/s10969-014-9179-9
  3. Timofeev V., Samygina V. // Crystals. 2023. V. 13. P. 71. https://doi.org/10.3390/cryst13010071
  4. Grigas A.T., Liu Z., Regan L. et al. // Protein Sci. 2022. V. 31. P. e4373. https://doi.org/10.1002/pro.4373
  5. Zhu Z., Wang W., Huang L. et al. // Cryst. Growth Des. 2024. V. 24. № 24. P. 10350. https://doi.org/10.1021/acs.cgd.4c01306
  6. Koclega K.D., Chruszcz M., Zimmerman M.D. et al. // Cryst. Growth Des. 2009. V. 10. P. 580. https://doi.org/10.1021/cg900971h
  7. Ren Y., Luo H., Huang H. et al. // Int. J. Biol. Macromol. 2020. V. 154. P. 1586. https://doi.org/10.1016/j.ijbiomac.2019.11.043
  8. Xu C., Battig A., Schartel B. et al. // Biomacromolecules. 2022. V. 23. P. 4841. https://doi.org/10.1021/acs.biomac.2c01008
  9. Chen R.Q., Lu Q.Q., Cheng Q.D. et al. // Sci. Rep. 2015. V. 5. P. 7797. https://doi.org/10.1038/srep07797
  10. Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
  11. Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. P. 3058. https://doi.org/10.1080/07391102.2018.1507839
  12. Marchenkova M.A., Konarev P.V., Rakitina T.V. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. P. 2939. https://doi.org/10.1080/07391102.2019.1649195
  13. Бойкова А.С., Дьякова Ю.А., Ильина К.Б. и др. // Кристаллография. 2018. Т. 63. № 6. С. 857. https://doi.org/10.1134/S0023476118060061
  14. Марченкова М.А., Бойкова А.С., Ильина К.Б. и др. // Acta Naturae. 2023. Т. 15. № 1. С. 58. https://doi.org/10.32607/actanaturae.11815
  15. Kordonskaya Y.V., Timofeev V.I., Marchenkova M.A. et al. // Crystals. 2022. V. 12. P. 484. https://doi.org/10.3390/cryst12040484
  16. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2022. V. 12. P. 1645. https://doi.org/10.3390/cryst12111645
  17. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19. https://doi.org/10.1016/j.softx.2015.06.001
  18. Кордонская Ю.В., Тимофеев В.И., Марченкова М.А. и др. // Кристаллография. 2024. Т. 69. № 4. С. 694. https://doi.org/10.31857/S0023476124040165
  19. Кордонская Ю.В., Тимофеев В.И., Марченкова М.А. и др. // Кристаллография. 2024. Т. 69. № 5. С. 885. https://doi.org/10.31857/S0023476124050159

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).