SYNTHESIS OF CRYSTALS OF ULTIMATE SULFIDES IN SULFUR MELT IN A STATIONARY TEMPERATURE GRADIENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibilities of crystal growth of ultimate sulfides in molten sulfur in a stationary temperature gradient are described. The optimum synthesis mode is achieved when the temperature of the hot end (charge) is 550°C, the temperature of the cold end (crystallization) is 460°C. As a result, crystals of TiS3, ZrS3, HfS3, V40S60, NbS3, TaS3, PdS2, CuS, Ag2S, metallic Au, HgS, CdS, Ga2S3, In2S3, SiS2, SnS2, PbS, Sb2S3 and Bi2S3 of millimeter and submillimeter size were obtained. Only polycrystalline agglomerates of tens of microns in size were obtained when transferring some metals, such as tungsten. The possibility of obtaining crystals of double sulfides is shown using CrPS3 as an example. The considered technique allows obtaining crystals of the required quality without using special equipment. The small size of the crystals is sufficient for laboratory study.

About the authors

D. A Chareev

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences; Ural Federal University; Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: d.chareev@gmail.com
Chernogolovka, Russia; Ekaterinburg, Russia; Moscow, Russia

V. O Zyabchenkov

Dubna State University

Dubna, Russia

S. A Badmaeva

Dubna State University

Dubna, Russia

A. N Nekrasov

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Chernogolovka, Russia

References

  1. Лякишев Н.П. Диаграммы состояния двойных металлических систем. М.: Машиностроение, 1996. 992 с.
  2. Yan J.Q., Sales B.C., Susner M.A., McGuire M.A. // Phys. Rev. Mater. 2017. V. 1. № 2. P. 023402. https://doi.org/10.1103/PhysRevMaterials.1.023402
  3. Чареев Д.А. // Кристаллография. 2016. Т. 61. № 3. С. 475. https://doi.org/10.7868/S002347611603005X
  4. Chajewski G., Szymański D., Daszkiewicz M., Kaczorowski D. // Mater. Horiz. 2024. V. 11. № 3. P. 855. https://doi.org/10.1039/D3MH01351K
  5. Ewald A.W., Tufte O.N. // J. Appl. Phys. 1958. V. 29. № 7. P. 1007. https://doi.org/10.1063/1.1723351
  6. Fiechter S., Kühne H.M. // J. Cryst. Growth. 1987. V. 83. P. 517. https://doi.org/10.1016/0022-0248(87)90246-6
  7. Chareev D.A., Khan M.E.H., Karmakar D. et al. // Cryst. Growth Design. 2023. V. 23. № 4. P. 2287. https://doi.org/10.1021/acs.cgd.2c01318
  8. Steudel R. // Top. Curr. Chem. 2003. V. 230. P. 81. https://doi.org/10.1007/b12115
  9. Bacon R.F., Fanelli R. // J. Am. Chem. Soc. 1943. V. 65. № 4. P. 639. https://doi.org/10.1021/ja01244a043
  10. Major F., Seeler F., Garlichs F. et al. Liquid Sulfur with Improved Viscosity as a Heat Transfer Medium. Patent EP2556129B1 (Germany). 2016.
  11. Rau H., Kutty T.R.N., De Carvalho J.G. // J. Chem. Thermodynamics. 1973. V. 5. № 2. P. 291. https://doi.org/10.1016/S0021-9614(73)80089-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).