Computer simulation of AgI|Si3O6 complex nanocomposites in single-wall carbon nanotubes
- Authors: Petrov А.V.1, Murin I.V.1, Ivanov-Schitz A.K.2
-
Affiliations:
- St.-Petersburg State University
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Issue: Vol 70, No 1 (2025)
- Pages: 119-125
- Section: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://journal-vniispk.ru/0023-4761/article/view/286307
- DOI: https://doi.org/10.31857/S0023476125010169
- EDN: https://elibrary.ru/IRZPTD
- ID: 286307
Cite item
Abstract
The method of molecular dynamics has been used to simulate heteronanostructures formed when silver iodide and silicon oxide nanoparticles are filling single-walled carbon nanotubes of the “armchair” type (12,12). The results of computer modeling show that stable nanostructured “internal nanocomposites” with AgI inclusions and silicon oxide clusters of various configurations can be formed in such tubes. Si3O6 clusters of linear and planar types have varying degrees of influence on the mobility of silver ions in the studied complex heteronanostructures of AgI|Si3O6@SWCNT.
Full Text

About the authors
А. V. Petrov
St.-Petersburg State University
Author for correspondence.
Email: a.petrov@spbu.ru
Институт химии
Russian Federation, St-PetersburgI. V. Murin
St.-Petersburg State University
Email: a.petrov@spbu.ru
Институт химии
Russian Federation, St-PetersburgA. K. Ivanov-Schitz
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: a.petrov@spbu.ru
Russian Federation, Moscow
References
- Mekuye B., Abera B. // Nano Select. 2023. V. 4. P. 486. https://doi.org/10.1002/nano.202300038
- Baig N., Kammakakam I., Falath W. // Mater. Adv. 2021. V. 2. P. 1821. https://doi.org/ 10.1039/d0ma00807a
- Saleh H.M., Hassan A.I. // Sustainability. 2023. V. 15. № 14. P. 10891. https://doi.org/10.3390/su151410891
- Rizvi M., Gerengi H., Gupta P. // ACS Symp. Ser. 2022. V. 1418. P. 1. https://doi.org/10.1021/bk-2022-1418.ch001
- Rao R., Pint C.L., Islam A.E. et al. // ACS Nano. 2018. V. 12. P. 11756. https://doi.org/10.1021/acsnano.8b06511
- Zhang Y., Rhee K.Y., Hui D. et al. // Compos. B. Eng. 2018. V. 143. P. 19. https://doi.org/10.1016/j.compositesb.2018.01.028
- Jadoun S., Chauhan N.P.S., Chinnam S. et al. // Biomedical Materials Devices. 2023. V. 1. P. 351. https://doi.org/10.1007/s44174-022-00009-0
- Barbaros I., Yang Y., Safaei B. et al. // Nanotechnol. Rev. 2022. V. 11. P. 321. https://doi.org/10.1515/ntrev-2022-0017
- Ilie A., Crampin S., Karlsson L., Wilson M. // Nano Res. 2012. V. 5. P. 833. https://doi.org/10.1007/s12274-012-0267-5
- Eatemadi M., Daraee H., Karimkhanloo H. et al. // Nanoscale Res. Let. 2014. V. 9. P. 393. https://doi.org/10.1186/1556-276X-9-393
- Rakhi R.B. // Nanocarbon and its Composites / Eds. Khan A. et al. Woodhead Publishing, 2019. P. 489. https://doi.org/10.1016/B978-0-08-102509-3.00016-X
- Sandoval S., Tobias G., Flahaut E. // Inorganica Chim. Acta. 2019. V. 492. P. 66. https://doi.org/10.1016/j.ica.2019.04.004
- Ates M., Eker A.A., Eker B. // J. Adhesion Sci. Technol. 2017. V. 31. P. 1. https://doi.org/10.1080/01694243.2017.1295625
- Poudel Y.R., Li W. // Mater. Today Phys. 2018. V. 7. P. 74. https://doi.org/10.1016/j.mtphys.2018.10.002
- Kharlamova M.V., Kramberger C. // Nanomaterials. 2021. V. 11. P. 2863. https://doi.org/10.3390/nano11112863
- Li L., Yang H., Zhou D. et al. // J. Nanomater. 2014. V. 2014. Art. 187891. https://doi.org/10.1155/2014/187891
- Nwanno C.E., Li W. // Nano Res. 2023. V. 16. P. 12384. https://doi.org/10.1007/s12274-023-6006-2
- Xiong J.Z., Yang Z.C., Guo X.L. et al. // Tungsten. 2024. V. 6. P. 174. https://doi.org/10.1007/s42864-022-00177-y
- Zhang D., Ye Z., Liu Z. et al. // Energy Storage Sci. Technol. 2023. V. 12. P. 2095. https://doi.org/10.19799/j.cnki.2095-4239.2023.0178
- Hou Z.-d., Gao Y.-y., Zhang Y. et al. // New Carbon Mater. 2023. V. 38. P. 230. https://doi.org/10.1016/S1872-5805(23)60725-5
- Thauer E., Ottmann A., Schneider P. et al. // Molecules. 2020. V. 25. P. 1064. https://doi.org/10.3390/molecules25051064
- Babkin A.V., Kubarkov A.V., Drozhzhin O.A. et al. // Dokl. Chem. 2023. V. 508. P. 1. https://doi.org/10.1134/S001250082360013X
- Enyashin A.N. // Comput. Mater. Discovery. 2018. P. 352. https://doi.org/10.1039/9781788010122-00352
- Shunaev V.V., Petrunin A.A., Zhan H. et al. // Materials. 2023. V. 16. P. 3270. https://doi.org/10.3390/ma16083270.
- Zare Y., Yop Rhee K., Park S.-J. // Results Phys. 2019. V. 15. P. 102562. https://doi.org/10.1016/j.rinp.2019.102562
- Vivanco-Benavides L.E., Martínez-González C.L., Mercado-Zúñiga C. et al. // Comput. Mater. Sci. 2022. V. 201. P. 110939. https://doi.org/10.1016/j.commatsci.2021.110939
- Eliseev A.A., Yashina L.V., Brzhezinskaya M.M. et al. // Carbon. 2010. V. 48. P. 2708. https://doi.org/10.1016/j.carbon.2010.02.037
- Baldoni M., Leoni S., Sgamellott A.I. et al. // Small. 2007. V. 3. P. 1730. https://doi.org/10.1002/smll.200700296
- Kumar S., Nehra M., Kedia D. et al. // Prog. Energy Combust. Sci. 2018. V. 64. P. 219. https://doi.org/10.1016/j.pecs.2017.10.005
- Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // Неорган. матер. 2010. Т. 46. С. 1509.
- Gotlib Yu., Ivanov-Schitz A.K., Murin I.V. et al. // Solid State Ionics. 2011. V. 188. P. 6. https://doi.org/10.1016/j.ssi.2010.11.020
- Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // ФТТ. 2011. Т. 53. С. 2256.
- Gotlib I.Yu., Ivanov-Schitz A.K., Murin I.V. et al. // J. Phys. Chem. C. 2012. V. 116. P. 19554. https://doi.org/10.1021/jp305518t
- Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // ФТТ. 2014. Т. 56. № 7. С. 1420.
- Уваров Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд-во СО РАН. 2008. 258 с.
- Petrov A.V., Salamatov M.S., Ivanov-Schitz A.K. et al. // Ionics. 2021. V. 27. P. 1255. https://doi.org/10.1007/s11581-020-03710-6
- Петров А.В., Мурин И.В., Иванов-Шиц А.К. // Журн. общ. химии. 2017. Т. 87. C. 1062.
- Mekky H. Preprint. https://doi.org/10.21203/rs.3.rs-3951310/v1
- Rappé A.K., Casewit C.J., Colwell K.S. et al. // J. Am. Chem. Soc. 1992. V. 114. P. 10024. https://doi.org/10.1021/ja00051a040
Supplementary files
