Investigation of photonic curing mechanisms of sol-gel zinc oxide films for flexible electronics
- Авторлар: Pronin I.А.1, Komolov A.S.2, Lazneva Е.F.2, Moshnikov V.А.3, Karmanov A.A.1, Yakushova N.D.1
-
Мекемелер:
- Penza State University
- Saint Petersburg State University
- Saint Petersburg Electrotechnical University
- Шығарылым: Том 70, № 1 (2025)
- Беттер: 126-132
- Бөлім: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://journal-vniispk.ru/0023-4761/article/view/286309
- DOI: https://doi.org/10.31857/S0023476125010178
- EDN: https://elibrary.ru/IRZPGJ
- ID: 286309
Дәйексөз келтіру
Аннотация
Photoannealing is a technological method that allows replacing the final high-temperature treatment of metal oxide sol-gel films with a combination of soft heating and ultraviolet irradiation. It has been established that an increase in temperature during heat treatment of the sol deposited on the substrate leads to the conversion of zinc acetate into layered basic zinc acetate (LBZA), which is transformed into hydroxide Zn(OH)2, which passes into amorphous oxide ZnO. It is shown that when heated to 130°C, parallel irradiation of films with UV radiation promotes the direct transition of LBZA into oxide due to the effective removal of hydroxyl and acetate groups. When the temperature is increased to 140°C, UV irradiation of films loses its expediency, since both photoannealing and heat treatment lead to identical properties of the studied materials.
Толық мәтін

Авторлар туралы
I. Pronin
Penza State University
Email: starosta07km1@mail.ru
Ресей, Penza
A. Komolov
Saint Petersburg State University
Email: starosta07km1@mail.ru
Ресей, St. Petersburg
Е. Lazneva
Saint Petersburg State University
Email: starosta07km1@mail.ru
Ресей, St. Petersburg
V. Moshnikov
Saint Petersburg Electrotechnical University
Email: starosta07km1@mail.ru
Ресей, St. Petersburg
A. Karmanov
Penza State University
Хат алмасуға жауапты Автор.
Email: starosta07km1@mail.ru
Ресей, Penza
N. Yakushova
Penza State University
Email: starosta07km1@mail.ru
Ресей, Penza
Әдебиет тізімі
- Korotcenkov G., Brinzari V., Schwank J. et al. // Sens. Actuators. B. 2001. V. 77. № 1–2. P. 244. https://doi.org/10.1016/S0925-4005(01)00741-9
- Waldman L.J., Haunert D.P., Carson J.D. et al. // ACS Omega. 2024. V. 9. № 27. P. 29732. https://doi.org/10.1021/acsomega.4c03288
- Ren X., Yang L., Cheng Q. et al. // J. Mater. Sci.: Mater. Electron. 2024. V. 35. № 3. P. 217. https://doi.org/10.1007/s10854-024-11949-2
- Kumar B.B., Tiwari P.K., Dubey S. et al. // Micro Nanostructures. 2022. V. 164. P. 107122. https://doi.org/10.1016/j.spmi.2021.107122
- Krishna M.S., Singh S., Batool M. et al. // Mater. Adv. 2023. V. 4. № 2. P. 320. https://doi.org/10.1039/D2MA00878E
- Yakimets I., MacKerron D., Giesen P. et al. // Adv. Mater. Res. 2010. V. 93. P. 5. https://doi.org/10.4028/www.scientific.net/AMR.93-94.5
- Lamanna L., Rizzi F., Guido F. et al. // Adv. Electron. Mater. 2019. V. 5. № 6. P. 1900095. https://doi.org/10.1002/aelm.201900095
- Kim Y.-H., Heo J.-S., Kim T.-H. et al. // Nature. 2012. V. 489. P. 128. https://doi.org/10.1038/nature11434
- Park J.W., Kang B.H., Kim H.J. // Adv. Funct. Mater. 2020. V. 30. № 20. P. 1904632. https://doi.org/10.1002/adfm.201904632
- Leppaniemi J., Eiroma K., Majumdar H. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 10. P. 8774. https://doi.org/10.1021/acsami.6b14654
- Pronin I.A., Plugin I.A., Kolosov D.A. et al. // Sens. Actuators. A. 2024. V. 377. P. 115707. https://doi.org/10.1016/j.sna.2024.115707
- Jaisutti R., Kim J., Park S.K. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 31. P. 20192. https://doi.org/10.1021/acsami.6b05724
- Dong Z., Wang J., Men J. et al. // Inorg. Chem. 2024. V. 63. № 12. P. 5709. https://doi.org/10.1021/acs.inorgchem.4c00178
- Subbiah A.S., Mathews N., Mhaisalkar S. et al. // ACS Energy. Lett. 2018. V. 3. № 7. P. 1482. https://doi.org/10.1021/acsenergylett.8b00692
- Lima A.H., Raeyani D., Sudmand S.A. et al. // Opt. Mater. 2024. V. 149. P. 115041. https://doi.org/10.1016/j.optmat.2024.115041
- Hsu J.W., Piper R.T. // J. Phys. D. 2024. V. 57. № 25. P. 252001. https://doi.org/10.1088/1361-6463/ad3560
- John R.A., Chien N.A., Shukla S.et al. // Chem. Mater. 2016. V. 28. № 22. P. 8305. https://doi.org/10.1021/acs.chemmater.6b03499
- Piper R.T., Xu W., Hsu J.W. // IEEE J. Photovolt. 2022. V. 12. № 3. P. 722. https://doi.org/10.1109/JPHOTOV.2022.3159395
- Tauc J. Amorphous and Liquid Semiconductors. Springer Science and Business Media, 2012. 441 p. https://doi.org/10.1007/978-1-4615-8705-7
- Song R.Q., Xu A.W., Deng B. et al. // Adv. Funct. Mater. 2007. V. 17. № 2. P. 296. https://doi.org/10.1002/adfm.200600024
- Wang Y., Li Y., Zhou Z. et al. // J. Nanoparticle Res. 2011. V. 13. P. 5193. https://doi.org/10.1007/s11051-011-0504-y
- Hosono E., Fujihara S., Kimura T. et al. // J. Colloid Interface Sci. 2004. V. 272. № 2. P. 391. https://doi.org/10.1016/j.jcis.2003.10.005
- Holzwarth U., Gibson N. // Nature Nanotechnol. 2011. V. 6. № 9. P. 534. https://doi.org/10.1038/nnano.2011.145
- Coleman V.A., Jagadish C. // Zinc Oxide Bulk, Thin Films and Nanostructures. Elsevier Science Ltd, 2006. Р. 1. https://doi.org/10.1016/B978-008044722-3/50001-4
- Pronin I.A., Averin I.A., Karmanov A.A et al. // Nanomaterials. 2022. V. 12. № 11. P. 1924. https://doi.org/10.3390/nano12111924
- Filippov I.A., Karmanov A.A., Yakushova N.D. et al. // Crystallography Reports. 2024. V. 69. № 7. Р. 1162. https://doi.org/10.1134/S106377452460162X
- Duchoslav J., Steinberger R., Arndt M. et al. // Corrosion Sci. 2014. V. 82. P. 356. https://doi.org/10.1016/j.corsci.2014.01.037
- Liang M.K., Limo M.J., Sola-Rabada A. et al. // Chem. Mater. 2014. V. 26. № 14. P. 4119. https://doi.org/10.1021/cm501096p
- Frankcombe T.J., Liu Y. // Chem. Mater. 2023. V. 35. № 14. P. 5468. https://doi.org/10.1021/acs.chemmater.3c00801
Қосымша файлдар
