Defect crystal structure of α-Na0.5–xR0.5+xF2+2x (R = Dy–Lu, Y) on X-Ray and electron diffraction data. II. Defect structure of the α-Na0.4R0.6F2.2 (R = Ho–Lu, Y) nanostructured crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The α-Na0.4R0.6F2.2 crystals (R = Ho–Lu, Y) were studied by X-ray diffraction analysis at 293 and 85 K. A unified cluster model of nanostructured crystals with a fluorite-type structure based on the polymorphism of KR3F10 (R = Er, Yb) was used to model their defect structure. The α-Na0.4R0.6F2.2 matrix component contained Na+ and R3+ in a ratio of 1 : 1. Part of the matrix anions was shifted from 8c to 32f position (sp. gr. Fm3m). Excess R3+ cations formed with Na+ octa-cubic clusters with nuclei in the form of cuboctahedra {F12} formed by interstitial anions at the 48i position. The α-Na0.4R0.6F2.2 cluster component was formed by octa-cubic clusters of type i. The electron diffraction method showed that the clusters had the shape of plates about 5 nm thick with superstructural ordering. Their structural model based on the K0.265Gd0.735F2.47 structure was proposed. For the first time, experimental confirmation of the affiliation of α-Na0.5–xR0.5+xF2+2x to nanostructured crystals was obtained by electron diffraction. When the temperature decreases from 293 to 85 K, the type of cluster component of the defect α-Na0.4R0.6F2.2 structure with R = Ho–Lu, and Y was not change. At 293 K, the boundary of the type change of the defect structure in the α-Na0.5–xR0.5+xF2+2x series was located between R = Dy (with the Z = 66 atomic number) and Ho (with Z = 67). When the temperature drops from 293 to 85 K, the position of the boundary was not change.

Texto integral

Acesso é fechado

Sobre autores

E. Sulyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: sulyanova.e@crys.ras.ru
Rússia, Moscow

B. Sobolev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: sulyanova.e@crys.ras.ru
Rússia, Moscow

V. Nikolaichik

Institute of Microelectronics Technology and High Purity Materials RAS

Email: sulyanova.e@crys.ras.ru
Rússia, Moscow Region, Chernogolovka

A. Avilov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: sulyanova.e@crys.ras.ru
Rússia, Moscow

Bibliografia

  1. Сульянова Е.А., Соболев Б.П., Николайчик В.И. и др. // Кристаллография. 2024. Т. 69. № 5. С. 772. https://doi.org/10.31857/S0023476124050036
  2. Sulyanova E.A., Sobolev B.P. // CrystEngComm. 2022. V. 24. P. 3762. https://doi.org/10.1039/D2CE00280A
  3. Sulyanova E.A., Sobolev B.P. // J. Phys. Chem. C. 2024. V. 128. № 10. P. 4200. https://doi.org/10.1021/acs.jpcc.3c08137
  4. Соболев Б.П., Минеев Д.А., Пашутин В.П. // Докл. АН СССР. 1963. Т. 150. № 4. С. 791.
  5. Liu Y., Lu Y., Yang X. et al. // Nature. 2017. V. 543. P. 229. https://doi.org/10.1038/nature21366
  6. Oleksa V., Mackova H., Engstova H. et al. // Sci. Rep. 2021. V. 11. P. 21273. https://doi.org/10.1038/s41598-021-00845-y
  7. Chen G., Shen j., Ohulchanskyy T.Y. et al. // ACS Nano. 2012. V. 6. № 9. P. 8280. https://doi.org/10.1021/nn100457j
  8. Tan M., del Rosal B., Zhang Y. et al. // Nanoscale. 2018. V. 10. P. 17771. https://doi.org/10.1039/C8NR02382D
  9. Quintanilla M., Hemmer E., Marques-Hueso J. et al. // Nanoscale. 2022. V. 14. P. 1492. https://doi.org/10.1039/d1nr06319g
  10. Pontonnier L., Patrat G., Aleonard S. et al. // Solid State Ionics. 1983. V. 9–10. № 1. P. 549. https://doi.org/10.1016/0167-2738(83)90293-X
  11. Pontonnier L. Relations entre la Structure et les Proprietés de Conductivite Ionique des Solutions Solides à Structure Fluorine Excendentaire en Anions Na0.5–xY0.5+xF2+2x. These. Grenoble, 1985. 196 p.
  12. Pontonnier L., Aleonard S., Roux M.T. // J. Solid State Chem. 1987. V. 69. № 1. P. 10. https://doi.org/10.1016/0022-4596(87)90003-X
  13. Pontonnier L., Patrat G., Aleonard S. // J. Solid State Chem. 1990. V. 87. № 1. P. 124. https://doi.org/10.1016/0022-4596(90)90073-7
  14. Журова Е.А., Максимов Б.А., Халл С. и др. // Кристаллография. 1997. Т. 42. № 2. С. 277.
  15. Otroshchenko L.P., Fykin L.E., Bystrova A.A. et. al. // Crystallography Reports. 2000. V. 45. № 6. P. 926.
  16. Кривандина Е.А., Быстрова А.А., Соболев Б.П. и др. // Кристаллография. 1992. Т. 37. № 6. С. 1523.
  17. Sobolev B.P. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors. Barcelona: Institut d’Estudis Catalans, 1994. 265 p.
  18. Petricek V., Palatinus L., Plášil J., Dusek M. // Z. Kristallogr. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
  19. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129. https://doi.org/10.1107/S0567739474000337
  20. International Tables for Crystallography V.C. / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
  21. Соболев Б.П., Голубев А.М., Эрреро П. // Кристаллография. 2003. Т. 48. № 1. С. 148.
  22. Казанский С.А. // Письма в ЖЭТФ. 1983. Т. 38. № 9. P. 430.
  23. Aleonard S., Guitel J.C., Roux M. Th. // J. Solid State Chem. 1978. V. 24. P. 331. https://doi.org/10.1016/0022-4596(78)90024-5
  24. Aleonard S., Guitel J.C., Le FurY. et al. // Acta Cryst. B. 1976. V. 32. № 12. P. 3227. https://doi.org/10.1107/S0567740876010005
  25. Мурадян Л.А., Максимов Б.А., Симонов В.И. // Координац. химия. 1986. Т. 12. № 10. С. 1398.
  26. Le Fur Y., Khaidukov N.M., Aleonard S. // Acta Cryst. C. 1992. V. 48. P. 978. https://doi.org/10.1107/S010827019101394X
  27. Grzechnik A., Khaidukov N., Friesec K. // Dalton Trans. 2013. V. 42. P. 441. https://doi.org/10.1039/C2DT31483E
  28. Sobolev B.P., Sulyanova E.A. // Int. J. Mol. Sci. 2023. V. 24. № 23. P. 17013. https://doi.org/10.3390/ijms242317013
  29. Le Fur Y., Aleonard S., Gorius M.F. et al. // Z. Kristallogr. 1988. V. 182. P. 281. https://doi.org/10.1524/zkri.1988.182.14.281
  30. Maksimov B.A., Solans Kh., Dudka A.P. et al. // Crystallography Reports. 1996. V. 41. P. 56.
  31. Achary S.N., Patwe S.J., Tyagi A.K. // Powder Diffr. 2002. V. 17. № 3. P. 225. https://doi.org/10.1154/1.1477198
  32. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554. https://doi.org/10.1134/S1063774509030249
  33. Сульянова Е.А., Верин И.А., Соболев Б.П. // Кристаллография. 2012. Т. 57. № 1. С. 79. https://doi.org/10.1134/S1063774512010130
  34. Федоров П.П., Александров В.Б., Бондарева О.С. и др. // Кристаллография. 2001. Т. 46. № 2. С. 280.
  35. Gleiter H. // Acta Mater. 2000. V. 48. P. 1. https://doi.org/10.1016/S1359-6454(99)00285-2
  36. Vogt T. // Neues Jahrb. Mineral. 1914. V. 2. № 1. P. 9.
  37. Goldschmidt V.M., Barth T., Lunde G. et al. Geochemische Verteilungsgesetze der Elemente. Part VII. Die Gesetze der Chrysatllochemie; Jacob Dybwad, Kristiania: Oslo, 1926. V. 7. P. 1.
  38. Александров В.Б., Гарашина Л.С. // Докл. АН СССР. 1969. Т. 189. № 2. С. 307.
  39. Cheetham A.K., Fender B.E.F., Steele D. et al. // Solid State Commun. 1970. V. 8. № 3. P. 171. https://doi.org/10.1016/0038-1098(70)90073-6
  40. Cheetham A.K., Fender B.E.F., Cooper M.J. // J. Phys. C. 1971. V. 4. № 18. P. 3107. https://doi.org/10.1088/0022-3719/4/18/016

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Difference Fourier maps of the electron density of α-Na0.4R0.6F2.2 with R = Ho (a, d), Er (b, d), Tm (c, e) in the (110) plane at 293 (a–c) and 85 K (d–e).

Baixar (378KB)
3. Fig. 2. Difference Fourier maps of the electron density of α-Na0.4R0.6F2.2 with R = Yb (a, d), Lu (b, d), Y (c, e) in the (110) plane at 293 (a–c) and 85 K (d–e).

Baixar (365KB)
4. Рис. 3. Картины электронной дифракции образца α-Na0.4Yb0.6F2.2, зоны: а – [100], б – [110], в – [111]. Горизонтальными и вертикальными стрелками указаны сверхструктурные относительно флюоритовой ячейки отражения вдоль направлений <100> и <110> соответственно.

Baixar (273KB)
5. Fig. 4. Octahedral-cubic clusters of i- (a), f- (b) and f–i-types (c), as well as a matrix element (m-block) in the structure of nanostructured crystals (d).

Baixar (269KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».