A Method for Solving Problems of the Isotropic Elasticity Theory with Bulk Forces in Polynomial Representation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for solving problems in isotropic elasticity theory with polynomial bulk forces is substantiated. The existence of a basis for the state space generated by monomials of random orders, which are the components of a volumetric force, makes it possible to obtain a rigorous description of a corresponding stress-strain state for any polynomial force. Solutions of the basic mixed equilibrium problem are obtained: (1) for a truncated cylinder clamped at the base and exposed to the action of a nonconservative volume force and (2) for a heavy hemisphere clamped at the equatorial section and having a nonhomogeneous shear modulus typical for bodies with subsurface hardening.

About the authors

V. I. Kuz’menko

Lipetsk State Technical University

Author for correspondence.
Email: vasilykuzmenko@yandex.ru
Russian Federation, Lipetsk, 398600

N. V. Kuz’menko

Lipetsk State Technical University

Author for correspondence.
Email: nik2.kuzmenko@mail.ru
Russian Federation, Lipetsk, 398600

L. V. Levina

Lipetsk State Technical University

Author for correspondence.
Email: satalkina_lyubov@mail.ru
Russian Federation, Lipetsk, 398600

V. B. Pen’kov

Lipetsk State Technical University

Author for correspondence.
Email: vbpenkov@mail.ru
Russian Federation, Lipetsk, 398600

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Allerton Press, Inc.