Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions
- Авторлар: Volkov-Bogorodskii D.B.1, Lurie S.A.1,2
- 
							Мекемелер: 
							- Institute of Applied Mechanics
- Ishlinsky Institute for Problems in Mechanics
 
- Шығарылым: Том 51, № 2 (2016)
- Беттер: 161-176
- Бөлім: Article
- URL: https://journal-vniispk.ru/0025-6544/article/view/162497
- DOI: https://doi.org/10.3103/S0025654416020047
- ID: 162497
Дәйексөз келтіру
Аннотация
We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich–Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby–Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976.
This paper is the first to present the exact analytical solution of the Eshelby–Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study.We also analyze the influence of scale factors.
Авторлар туралы
D. Volkov-Bogorodskii
Institute of Applied Mechanics
							Хат алмасуға жауапты Автор.
							Email: v-b1957@yandex.ru
				                					                																			                												                	Ресей, 							Leninskii pr. 32A, Moscow, 117334						
S. Lurie
Institute of Applied Mechanics; Ishlinsky Institute for Problems in Mechanics
														Email: v-b1957@yandex.ru
				                					                																			                												                	Ресей, 							Leninskii pr. 32A, Moscow, 117334; pr. Vernadskogo 101, str. 1, Moscow, 119526						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					