On Periodic Motions of a Nearly Autonomous Hamiltonian System in the Occurrence of Double Parametric Resonance
- Авторы: Kholostova O.V.1
- 
							Учреждения: 
							- Moscow Aviation Institute
 
- Выпуск: Том 54, № 2 (2019)
- Страницы: 211-233
- Раздел: Article
- URL: https://journal-vniispk.ru/0025-6544/article/view/163847
- DOI: https://doi.org/10.3103/S0025654419030154
- ID: 163847
Цитировать
Аннотация
Motions of a 2π-periodic nearly autonomous Hamiltonian system with two degrees of freedom in the neighborhood of the equilibrium position are examined. It is assumed that the Hamiltonian of the system depends on three parameters, namely, ε, α, and β, and the system is an autonomous system if ε = 0. Let a double parametric resonance, i.e., a situation when one of the frequencies of small linear oscillations of the system in the neighborhood of the equilibrium position is an integer number and the other one is a half-integer number, takes place in an unperturbed (ε = 0) system for some α and β values. For sufficiently small, but nonzero, ε values in a small neighborhood of the resonance point considered with a fixed resonant value of one parameter (β), the issue of the existence, bifurcations, and stability in the linear approximation of periodic motions of the system is resolved. In the occurrence of multiple resonances of the type under study, periodic motions of a dynamically symmetrical satellite in the neighborhood of its stationary rotation (cylindrical precession) in a slighty elliptical orbit are constructed and linear and nonlinear analyses of their stability are carried out.
Об авторах
O. Kholostova
Moscow Aviation Institute
							Автор, ответственный за переписку.
							Email: kholostova_o@mail.ru
				                					                																			                												                	Россия, 							Moscow, 125080						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					