Screening of producers of proteolytic enzymes effective against fibrillar and globular proteins, among the microfungi associated with insects

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Thirty cultures of microfungi associated with insects were isolated and identified. These cultures were used to study the formation of proteolytic enzymes by the injection seeding method on agarized nutrient media containing sources of specific fibrillar and globular protein substrates. Data was collected on the presence of caseinolytic (EI from 1.00 to 2.75), collagenolytic (EI from 1.00 to 3.25), gelatinolytic (EI from 1.00 to 1.84), elastolytic (EI from 1.00 to 1.50), keratinolytic (EI from 1.00 to 2.00), and hemoglobin hydrolysis abilities (EI from 1.00 to 1.67) for promising strains. Promising strains were identified that showed high activity against tested substrates – nos 12 (Penicillium hirsutum 1), 19 (Cladosporium sphaerospermum 1), 21 (Aspergillus unguis 1), and 25 (Cladosporium herbarum 1). Submerged cultivation of these promising strains was carried out, and the proteolytic activity of extracellular proteases in the culture liquid was determined in relation to various protein substrates. The highest level of total proteolytic activity was determined in the culture liquid of Aspergillus ochraceus 1 (Eazocasein = 1.686 con.units/ml), collagenolytic activity during cultivation of the strain Cladosporium herbarum 1 (Eazocoll = 0.110 con. units/ml), as well as elastolytic activity using the chromogenic peptide substrate S‑4760 in the culture fluid of the micromycete Aspergillus unguis 2 (ES‑4760 = 7.366 mmol pNA × 103/ml/min) under conditions of deep cultivation of insect-­associated microfungi strains.

作者简介

D. Basalaeva

Lomonosov Moscow State University; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: dbasalaewa@yandex.ru
Moscow, Russia; Moscow, Russia

A. Bogomolova

Utrecht University

Email: a1a2bogomolova@gmail.com
Utrecht, Netherlands

A. Osmolovsky

Lomonosov Moscow State University

Email: aosmol@mail.ru
Moscow, Russia

A. Aleksandrova

Lomonosov Moscow State University

Email: alina-alex2011@yandex.ru
Moscow, Russia

参考

  1. Ballester A.-R., Lopez-Perez M., de la Fuente B. et al. Functional and pharmacological analyses of the role of Penicillium digitatum proteases on virulence. Microorganisms. 2019. V. 7 (7). P. 198–217. https://doi.org/10.3390/microorganisms7070198
  2. Barrett A.J. Proteolytic enzymes: serine and cystein peptidases. Methods in Enzymology. 1994. V. 244. V. 244 (1). P. 1–15. https://doi.org/10.1006/abio.1995.1306
  3. Bednenko D.M., Kreyer V.G., Baranova N.A. et al. Biotechnological potential of proteolytic enzymes of micromycete Aspergillus flavus O-1. Advances in medical mycology. 2018. V. 19. P. 108–110. (In Russ.) https://doi.org/10.14427/amm.2018.xix.08
  4. Braunstein A.E. Nomenclature of enzymes: Recommendations of the International Biochemical Union on the nomenclature and classification of enzymes, symbols of the kinetics of enzymatic reactions. VINITI, Moscow, 1979. (In Russ.)
  5. Bukharin O.V. (ed.). Associative symbiosis. Publishing House of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2007. (In Russ.)
  6. Castellanos-Moguel J., Gonzales-Barajas M., Mier T. et al. Virulence testing and extracellular subtilin-like (Pr1) and trypsin-like (Pr2) activity during propagule production of Paecilomyces fumosoroseus isolated from whiteflies (Homoptera: Aleyrodidae). Revista Iberoamericana de Micología. 2007. V. 24 (1). P. 62–68. https://doi.org/10.1016/s1130-1406(07)70016-5
  7. Douglas A.E. Symbiotic interaction. Oxford Univ. Press, Toronto, 1994.
  8. Emtsev V.T. Associative symbiosis of soil diazotrophic bacteria and vegetable crops. Pochvovedenie. 1994. No. 4. P. 74– 84. (In Russ.)
  9. Evlakhova A.A. Entomopatogenny`e griby`. Sistematika, biologiya, prakticheskoe znachenie. Leningrad: Nauka, 1974. 260 s.
  10. Fukuda R., Horiuchi F., Ohta A. et al. The prosequence of Rhizopus niveus asparatic proteinase-I supports correct folding and secretion of its mature part in Saccharomyces cerevisiae. J. Biol. Chem. 1994. V. 269 (13). P. 9556–9561.
  11. Ganbarov H.G., Safarova A. Kh., Shafieva S.M. Proteolytic activity of fungi of the genus Aspergillus isolated from the soil of Azerbaijan. Izvestiya Ufimskogo nauchnogo tsentra RAN. 2018. V. 3 (1). P. 80–84. (In Russ.) https://doi.org/10.31040/2222-8349-2018-1-3-80-84
  12. Giovannoni M., Larini I., Scafati V. A novel Penicillium sumatranse isolate reveals an arsenal of degrading enzymes exploitable in algal biorefinery processes. Biotechnol. Biofuels Bioproducts. 2021. V. 14 (1). P. 180–199. https://doi.org/10.1186/s13068-021-02030-9
  13. Gzogyan L.A. Proteolytic enzymes and their inhibitors in grown mushrooms. Cand. Sci. Thesis. Krasnodar, 2005. (In Russ.)
  14. Lacey L.A., Kaya K.H. Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Springer, Davis, 2007.
  15. Lui S.Q., Meng Z.H., Jang J.K. et al. Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling. BMC Struct. Biol. 2007. N7. A 33. https://doi.org/10.1186/1472-6807-7-33
  16. Lukin S.A., Kevin P.A., Zvyagintsev D. Yu. Azospirilli and associative nitrogen fixation in non-legume crops in agricultural practice. Selskokhozyaystvennaya biologiya. 1987. N1. P. 51–58. (In Russ.)
  17. Lysenko L.A., Nemova N.N., Kancerova I.P. Proteolytic regulation of biological processes. Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk, 2011. (In Russ.)
  18. Osmolovskiy A.A., Popova E.A., Kreyer V.G. et al. Fibrinolytic and collagenolytic activity of extracellular proteinases of micromycete strains Aspergillus ochraceus l-1 and Aspergillus ustus 1. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016. N1. P. 71–75. (In Russ.) https://doi.org/10.3103/S0096392516010053
  19. Popova E.A., Osmolovskiy A.A., Kreyer V.G. et al. Production of proteinases highly active against fibrillar proteins by Aspergillus ustus strain. Mikologiya i fitopatologiya. 2019. V. 53 (4). P. 229–235. (In Russ.) https://doi.org/10.1134/S0026364819040111
  20. Provorov N.A. Genetic and its evolutionary basis of the theory of symbiosis. Zhurnal obshchey biologii. 2001. V. 62. P. 472–495. (In Russ.) http://doi.org/10.1134/C0026364819020089
  21. Rimareva L.V., Overchenko M.B., Morozova K.A. Patent 2315096 C1 Russian Federation No. of the fungus Aspergillus oryzae, producing a complex of proteinases, pectinases, β-glucanases, α-amylase and xylanase. Application No. 2006123552/13 dated 04.07.2006; published 20.01.2008, Bulletin N2. (In Russ.)
  22. Semenova T.A., Dunaevsky Ya.E., Belyakova G.A. et al. Extracellular peptidases of insect-associated fungi and their possible use in biological control programs and as pathogenicity markers. Fungal Biol. 2020. V. 1 (124). P. 65–72. https://doi.org/10.1016/j.funbio.2019.11.005
  23. Semenova T.A. Extracellular peptidases of fungi forming biotic connections with insects. Cand. Biol. Thesis Abstract. Moscow, 2001. (In Russ.)
  24. Shamraichuk I.L., Belyakova G.A., Eremina I.M. et al. Proteolytic enzymes of fungi and their inhibitors as promising and biocidal agents with antifungal action. Vestnik Moskovskogo universiteta. 2020. V. 75 (3). P. 123–130.
  25. Sharma H., Rai A.K., Chettri R. et al. Bioactivities of Penicillium citrinum isolated from a medicinal plant Swertia chirayita. Arch. Microbiol. 2021. V. 203(8). P. 5173–5182. https://doi.org/10.1007/s00203-021-02498-x
  26. Soltan M.A., Eldeen M.A., Elbassiouni N. et al. In silico designing of a multitope vaccine against Rhizopus microspores with potential activity against other mucormycosis causing fungi. Cells. 2021. V. 10 (11). P. 1–25. https://doi.org/10.3390/cells10113014
  27. Veiter L., Rajamanickam V., Herwig C. The filamentous fungal pellet-relationship between morphology and productivity. Appl. Microbiol. Biotechnol. 2018. V. 102. P. 2997–3006. https://doi.org/10.1007/s00253-018-8818-7
  28. Velikoreczkaya I.A. Creation of new complex farmer’s preparations of fungal proteins based on Penicillium canescens for effective conversion of protein-containing plant serum. Cand. Tech. Thesis. Moscow, 2019. (In Russ.)
  29. Yakhyaeva M.A., Akhmedova Z.R. Some properties of proteolytic enzymes of the fungus Aspergillus oryzae-5. Universum: technical sciences. 2020. N9–2 (78). P. 50–54. (In Russ.)
  30. Ye F., Liang L., Mi Q. et al. Preliminary crystallographic study of two cuticle-degrading proteases from the nematophagous fungi Lecanicillium psalliotae and Paecilomyces lilacinus. Acta Crystallogr. Sect. F: structural biology and crystallization communications. 2009. V. 1 (65). P. 271–274. https://doi.org/10.1107/S1744309109003595
  31. Бедненко Д.М., Крейер В.Г., Баранова Н.А. и др. (Bednenko et al.) Биотехнологический потенциал протеолитических ферментов микромицета Aspergillus flavus O-1 // Успехи медицинской микологии. 2018. Т. 19. С. 108–110.
  32. Браунштейн А.Э. (Braunstein) Номенклатура ферментов: Рекомендации Международного биохимического союза по номенклатуре и классификации ферментов, символам кинетики ферментативных реакций. М.: ВИНИТИ, 1979. 322 с.
  33. Бухарин О.В. (ред.). (Bukharin) Ассоциативный симбиоз. Екатеринбург: Изд-во УрО РАН, 2007. 265 c.
  34. Великорецкая И.А. (Velikoretskaya) Создание новых комплексных агропрепаратов грибных белков на основе Penicillium canescens для эффективной переработки белоксодержащей растительной сыворотки. Дисс. … канд. техн. наук. Москва, 2019. 151 с.
  35. Ганбаров Х.Г., Сафарова А.Х., Шафиева С.М. (Ganbarov et al.) Протеолитическая активность грибов рода Aspergillus, выделенных из почвы Азербайджана // Известия Уфимского научного центра РАН. 2018. № 3 (1). С. 80–84.
  36. Гзогян Л.А. (Gzoghyan) Протеолитические ферменты и их ингибиторы в культивируемых грибах. Диссертация на соискание ученой степени кандидата биологических наук. Краснодар, 2005. 20 c.
  37. Емцев В.Т. (Emtsev) Ассоциативный симбиоз почвенных диазотрофных бактерий и овощных культур. Почвоведение. 1994. № 4. С. 74–84.
  38. Лукин С.А., Кевин П.А. Звягинцев Д.Ю. (Lukin et al.) Азоспириллы и ассоциативная азотфиксация у небобовых культур в практике сельского хозяйства // Сельхохозяйственная биология. 1987. № 1. С. 51–58.
  39. Лысенко Л.А., Немова Н.Н., Канцерова И.П. (Lysenko et al.) Протеолитическая регуляция биологических процессов. Петрозаводск: Карельский научный центр РАН, 2011. 482 c.
  40. Осмоловский А.А., Попова Е.А., Крейер В.Г. и др. (Osmolovsky et al.) Фибринолитическая и коллагенолитическая активность внеклеточных протеиназ штаммов микромицетов Aspergillus ochraceus l-1 и Aspergillus ustus 1 // Вестн. Московского ун-та. Сер. 16. Биол. 2016. № 1. С. 71–75.
  41. Попова Е.А., Осмоловский А.А., Крейер В.Г. и др. (Popova et al.) Продукция штаммом Aspergillus ustus протеиназ, высокоактивных в отношении фибриллярных белков // Микология и фитопатология. 2019. Т. 53. № 4. С. 229–235.
  42. Проворов Н.А. (Provorov) Генетика и эволюционные основы теории симбиоза // Журнал общей биологии. 2001. Т. 62. С. 472–495.
  43. Римарева Л.В., Оверченко М.Б., Морозова К.А. (Rimareva et al.) Патент 2315096 С1 Российская Федерация № гриба Aspergillus oryzae, продуцирующий комплекс протеиназ, пектиназ, β-глюканазы, α-амилазы и ксиланазы. Заявка № 2006123552/13 от 04.07.2006; опубл. 20.01.2008, Бюл. № 2.
  44. Семенова Т.А. (Semenova) Внеклеточные пептидазы грибов, образующих биотические связи с насекомыми. Автореферат дисс. … канд. биол. наук. М., 2001. 26 с.
  45. Шамрайчук И.Л., Белякова Г.А., Еремина И.М. и др. (Shamraychuk et al.) Протеолитические ферменты грибов и иx ингибиторы как перспективные и биоцидные средства антифунгального действия. Вестник Московского университета. 2020. Т. 75, № 3. С. 123–130.
  46. Яхьяева М.А. Ахмедова З.Р. (Yakhyaeva, Akhmedova) Некоторые свой-ства протеолитических ферментов гриба Aspergillus oryzae-5. Universum: технические науки. 2020. № 9–2 (78). С. 50–54.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».