Microbial community composition and carbon cycling processes in cascadian alpine lakes of the Central Caucasus
- Authors: Savvichev A.S.1, Kadnikov V.V.1, Rusanov I.I.1, Zakharova E.E.1, Beletsky A.V.1, Ravin N.V.1, Kallistova A.Y.1, Tekeev D.K.2, Pimenov N.V.1
-
Affiliations:
- Research Center of Biotechnology, Russian Academy of Sciences
- Federal State Budgetary Institution “Teberdinsky National Park”
- Issue: Vol 94, No 3 (2025)
- Pages: 232-246
- Section: EXPERIMENTAL ARTICLES
- URL: https://journal-vniispk.ru/0026-3656/article/view/279425
- DOI: https://doi.org/10.31857/S0026365625030025
- ID: 279425
Cite item
Abstract
In August 2023, studies of microbial communities in the water column of a cascade of high-mountain lakes in the Western Caucasus (Lake Klukhorskoye) were conducted. Data on the composition of microbial communities and the biogeochemical activity of microbial processes were obtained and analyzed. The lakes of the cascade (Bolshoye, Maloye and Vostochnoye Klukhorskie) are located at an altitude of 2670–2980 m and are ultra-fresh and oligotrophic, similar in hydrochemical composition, but differing in temperature and water transparency. The value of primary photosynthesis production was 5.3–8.0 μg C l–1 day–1, dark carbon dioxide assimilation 0.5–1.2 μg C l–1 day–1. The values of the total number of microorganisms varied from 70 to 150 thousand cells ml–1. In the oligotrophic waters of the Klukhor Lakes, the bacterial phyla Actinobacteriota, Bacteroidota, and Pseudomonadota, representing mainly aerobic heterotrophic groups, dominated in the microbial community. Archaea constituted less than 1% of the community. Microorganisms that are indicators of turbid and transparent waters of the studied lakes were identified. These are aerobic Gram-positive bacteria of the Ilumatobacteraceae family, psychrophilic bacteria of the Comamonadaceae family – important components of glacial microbiomes, and oligotrophic bacteria of the Sphingomonadaceae family, resistant to solar radiation, including ultraviolet radiation. The microalgae community of the water column of Lake Bolshoe Klukhorskoye included representatives of green microalgae, diatoms Pinnularia, chrysomonads, and cryptophytes. The composition of microalgae in the three lakes differed significantly. The cyanobacteria of the transparent Maloye Klukhorskoye Lake were poorer than those of the Bolshoe Klukhorskoye Lake. In the Bolshoe Klukhorskoye Lake, copepods Centropages sp. and Acanthodiaptomus denticornis, adapted to extreme high-mountain conditions, including low temperatures and high ultraviolet radiation, were found in the water column. The results of the work indicate that the formation of new periglacial lakes and the loss of connection with glaciers during their retreat leads to a change in the structure of plankton communities during the transition from turbid glacial lakes to transparent ones. The composition of microbial communities of water bodies and their biogeochemical productivity can be indicators of large-scale and local climate change.
Full Text

About the authors
A. S. Savvichev
Research Center of Biotechnology, Russian Academy of Sciences
Author for correspondence.
Email: savvichev@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, MoscowV. V. Kadnikov
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Skryabin Institute of Bioengineering
Russian Federation, MoscowI. I. Rusanov
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, MoscowE. E. Zakharova
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, MoscowA. V. Beletsky
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Skryabin Institute of Bioengineering
Russian Federation, MoscowN. V. Ravin
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Skryabin Institute of Bioengineering
Russian Federation, MoscowA. Yu. Kallistova
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, MoscowD. K. Tekeev
Federal State Budgetary Institution “Teberdinsky National Park”
Email: savvichev@mail.ru
Russian Federation, Karachay-Cherkesia, 369210, Teberda
N. V. Pimenov
Research Center of Biotechnology, Russian Academy of Sciences
Email: savvichev@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, MoscowReferences
- Беляев Н. А., Пересыпкин В. И., Поняев М. С. Органический углерод воды, взвеси и верхнего слоя донных осадков западной части Карского моря // Океанология. 2010. Т. 50. С. 748–757.
- Belyaev N. A., Peresypkin V. I., Ponyaev M. S. The organic carbon in the water, the particulate matter, and the upper layer of the bottom sediments of the west Kara Sea // Oceanology (Moscow). 2010. V. 50. P. 706–715.
- Даувальтер В. А., Денисов Д. Б. Особенности химического состава воды и донных отложений малых арктических горных озер // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2019. Т. 16. С. 126–130. https://doi.org/10.31241/FNS.2019.16.026
- Русанов И. И., Саввичев А. С., Юсупов С. К., Пименов Н. В., Иванов М. В. Образование экзометаболитов в процессе микробного окисления метана в морских экосистемах // Микробиология. 1998. Т. 67. С. 710–717.
- Rusanov I. I., Savvichev A. S., Yusupov S. K., Pimenov N. V., Ivanov M. V. Production of exometabolites in the microbial oxidation of methane in marine ecosystems // Microbiology (Moscow). 1998. V. 67. P. 590–596.
- Саввичев А. С., Захарова Е. Е., Веслополова Е. Ф., Русанов И. И., Леин А. Ю., Иванов М. В. Микробные процессы циклов углерода и серы в Карском море // Океанология. 2010. Т. 50. С. 893–908.
- Savvichev A. S., Zakharova E. E., Veslopolova E. F., Rusanov I. I., Lein A.Yu., Ivanov M. V. Microbial processes of carbon and sulfur cycles in the Kara Sea // Oceanology (Moscow). 2010. V. 50. P. 893–908.
- Салпагаров Д. С. Некоторые особенности горных озер высокогорий северо-западного Кавказа // Вестник Ставропольского гос. ун-та. Науки о Земле. 2003. Т. 34. С. 137–142. https://cyberleninka.ru/article/n/nekotorye-osobennosti-gornyh-ozer-vysokogoriy-severo-zapadnogo-kavkaza/viewer
- Тевяшова О. Е. Сбор и обработка зоопланктона в рыбоводных водоемах. Методическое руководство (с определителем основных пресноводных видов). Ростов-на-Дону: ФГБУ “АзНИИРХ”, 2009. 84 с.
- Alonso C. Rocco V. Barriga J. P., Battini M. A., Zagarese H. Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation // Limnol. Oceanogr. 2004. V. 49. P. 225–232.
- Altenburger A., Blossom H. E., Garcia-Cuetos L., Jakobsen H. H., Carstensen J., Lundholm N., Hansen P. J., Moestrup Q., Haraguchi L. Dimorphism in cryptophytes – The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications // Sci. AdV. 2020. V. 6. Art. eabb1611. https://doi.org/10.1126/sciadv.abb1611
- Baron J. S., Campbell D. H. Nitrogen fluxes in a high elevation Colorado rocky mountain basin // Hydrol. Process. 1997. V. 11. P. 783–799. https://doi.org/10.1002/(SICI)1099-1085(199706)11:7
- Camacho A., Erez J., Chicote A., Florin M., Squires M. M., Lehmann C., Bahofen R. Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web // Aquat. Sci. 2001. V. 63. P. 91–106. https://doi.org/10.1007/PL00001346
- Chernogor L., Denikina N., Kondratov I., Solovarov I., Khanaev I., Belikov S., Ehrlich H. Isolation and identification of the microalgal symbiont from primmorphs of the endemic freshwater sponge Lubomirskia baicalensis (Lubomirskiidae, Porifera) // Eur. J. Phycol. 2013. V. 48. P. 497–508. https://doi.org/10.1080/09670262.2013.862306
- Choi B., Son M., Kim J. I., Shin W. Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea // Algae. 2013. V. 28. P. 307–330. https://doi.org/10.4490/algae.2013.28.4.307
- Ciok A., Budzik K., Zdanowski M. K., Gawor J., Grzesiak J., Decewicz P., Gromadka R., Bartosik D., Dziewit L. Plasmids of psychrotolerant Polaromonas spp. isolated from arctic and antarctic glaciers – diversity and role in adaptation to polar environments // Front. Microbiol. 2018. V. 9. P. 1285. https://doi.org/10.3389/fmicb.2018.01285
- Cuperova Z., Holzer E., Salka I., Sommaruga R., Koblizek M. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes // Appl. Environ. Microbiol. 2013. V. 79. P. 6439–6446. https://doi.org/10.1128/AEM.01526-13
- Dai Y., Yang Y., Wu Z., Feng Q., Xie S., Liu Y. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status // Appl. Microbiol. Biotechnol. 2015. V. 100. P. 4161–4175. https://doi.org/10.1007/s00253-015-7253-2
- Ding R., Liu L., Shu S., Li Y., Chen F. Diversity of freshwater calanoid copepods (Crustacea: Copepoda: Calanoida) in North-Eastern China // Diversity. 2024. V. 16. Art. 288. https://doi.org/10.3390/d16050288
- Edgar R. C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. V. 26. P. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
- Fellman J. B., Hood E., D’Amore D.V., Edwards R. T., White D. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds // Biogeochemistry. 2009. V. 95. P. 277–293. https://doi.org/10.1007/s10533-009-9336-6
- Haller L., Tonolla M., Zopfi J., Peduzzi R., Wildi W., Poté J. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland) // Water Res. 2011. V. 45. P. 1213–1228. https://doi.org/10.1016/j.watres.2010.11.018
- Ivanov M. V., Pimenov N. V., Rusanov I. I., Lein A.Yu. Microbial processes of the methane cycle at the north-western shelf of the Black Sea // Estuar. Coast. Shelf Sci. 2002. V. 54. P. 589–599. https://doi.org/10.1006/ecss.2000.0667
- Jersabek C. D., Brancel A., Stoch F., Schabetsberger R. Distribution and ecology of copepods in mountainous regions of the Eastern Alps // Hydrobiologia. 2001. V. 453. P. 309–324. https://doi.org/10.1023/A:1013113327674
- Laurion I., Ventura M., Catalan J., Psenner R., Sommaruga R. Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among- and within-lake variability // Limnol. Oceanogr. 2000. V. 45. P. 1274–1288. https://doi.org/10.4319/lo.2000.45.6.1274
- Liao B., Yan X., Zhang J., Chen M., Li Y., Huang J., Lei M., He H., Wang J. Microbial community composition in alpine lake sediments from the Hengduan Mountains // Microbiol. Open. 2019. V. 8. Art. e832. https://doi.org/10.1002/mbo3.832
- Liu Y., Zhang J. X., Zhao L., Zhang X. L., Xie S. G. Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment // Limnol. 2014. V. 15. P. 249–256. https://doi.org/10.1007/s10201-014-0429-0
- Liu Y., Yao T., Jiao N., Liu X., Kang S., Luo T. Seasonal dynamics of the bacterial community in Lake Namco, the largest Tibetan lake // Geomicrobiol. J. 2013. V. 30. P. 17–28. https://doi.org/10.1080/01490451.2011.638700
- Magoc T., Salzberg S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies // Bioinform. 2011. V. 27. P. 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
- Mansfeldt C., Deiner K., Mächler E., Fenner K., Eggen R. I., Stamm C., Schönenberger U., Walser J.-C., Altermatt F. Microbial community shifts in streams receiving treated wastewater effluent // Sci. Total Environ. 2020. V. 709. Art. 135727. https://doi.org/10.1016/j.scitotenv.2019.135727
- Menzies J. Glacial Geomorphology // Encyclopedia of paleoclimatology and ancient environments / Ed. Gornitz V. Berlin: Springer Netherland, 2007. P. 361–374. ISBN978-1-4020-4551-6
- Middelburg J. J., Levin L. A. Coastal hypoxia and sediment biogeochemistry // Biogeosci. 2009. V. 6. P. 1273–1293. https://doi.org/10.5194/bg–6–1273–2009
- Morris D. P., Zagarese H., Williamson C. E., Balseiro E. G., Hargreaves B. R., Modenutti B., Moeller R., Queimalinos C. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon // Limnol. Oceanogr. 1995. V. 40. P. 1381–1391. https://doi.org/10.4319/lo.1995.40.8.1381
- Nino-Garcia J.P., Ruiz-Gonzalez C., del Giorgio P. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks // ISME J. 2016. V. 10. P. 1755–1766. https://doi.org/10.1038/ismej.2015.226
- Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: a versatile open source tool for metagenomics // Peer. J. 2016. V. 4. P. 1–22. https://doi.org/10.7717/peerj.2584
- Rose K. C., Williamson C. E., Saros J. E., Sommaruga R., Fischer J. M. Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms // Photochem. Photobiol. Sci. 2009. V. 8. P. 1244–1256. https://doi.org/10.1039/b905616e
- Rusanov I. I., Savvichev A. S., Zasko D. N., Sigalevich P. A., Pipko I. I., Pugach S. P., Pimenov N. V., Semiletov I. P. Primary production and microbial heterotrophy in the Siberian arctic seas, Bering Strait, and Gulf of Anadyr, Bering Sea // Estuar. Coast. Shelf Sci. 2024. V. 299. Art. 108673. https://doi.org/10.1016/j.ecss.2024.108673
- Savvichev A. S., Babenko V. V., Lunina O. N., Letarova M. A., Boldyreva D. I., Veslopolova E. F., Demidenko N. A., Kokryatskaya N. M., Krasnova E. D., Gaisin V. A., Kostryukova E. S., Gorlenko V. M., Letarov A. V. Sharp water column stratification with an extremely dense microbial population in a small meromictic lake, Trekhtzvetnoe // Environ. Microbiol. 2018. V. 20. P. 3784−3797. https://doi.org/10.1111/1462–2920.14384
- Savvichev A., Rusanov I., Dvornikov Y., Kadnikov V., Kallistova A., Veslopolova E., Chetverova A., Leibman M., Sigalevich P., Pimenov N., Ravin N., Khomutov A. The water column of the Yamal tundra lakes as a microbial filter preventing methane emission // Biogeosci. 2021. V. 18. P. 2791–2807. https://doi.org/10.5194/bg-18-2791-2021
- Škaloud P., Škaloudová M., Procházková A., Němcová Y. Morphological delineation and distribution patterns of four newly described species within the Synura petersenii species complex (Chrysophyceae, Stramenopiles) // Eur. J. Phycol. 2014. V. 49. P. 213–229. https://doi.org/10.1080/09670262.2014.905710
- Shao K., Qin B., Chao J., Gao G. Sediment bacteria in the alpine lake Sayram: vertical patterns in community composition // Microorganisms. 2023. V. 11. № 11. Art. 2669. https://doi.org/10.3390/microorganisms11112669
- Sommaruga R. The role of solar UV radiation in the ecology of alpine lakes // Photochem. Photobiol. 2001. V. 62. I. 1–2. P. 35–42. https://doi.org/10.1016/S1011-1344(01)00154-3
- Sommaruga R., Augustin G. Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass // Aquat. Sci. 2006. V. 68. P. 129–141. https://doi.org/10.1007/s00027-006-0836-3
- Sommaruga R., Casamayor E. O. Bacterial “cosmopolitanism” and importance of local environmental factors for community composition in remote high-altitude lakes // Freshwater Biol. 2009. V. 54. P. 994–1005. https://doi.org/10.1111/j.1365-2427.2008.02146.x
- Sommaruga R., Kandolf G. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates // Sci. Rep. 2014. V. 4. Art. 4113. https://doi.org/10.1038/srep04113
- Sommaruga R., Psenner R. Ultraviolet radiation in a high mountain lake of the Austrian Alps: air and underwater measurements // Photochem. Photobiol. 1997. V. 65. P. 957–963. https://doi.org/10.1111/j.1751-1097.1997.tb07954.x
- Sorokin Y. I. Radioisotopic methods in hydrobiology. Berlin–Heidelberg–New York: Springer-Verlag, 1998. 321 p.
- Tartarotti B., Sau N., Chakrabarti S., Trattner F., Steinberg C. E., Sommaruga R. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes // J. Plankton Res. 2014. V. 36. P. 557–566. https://doi.org/10.1093/plankt/fbt109
- Tilzer M. M. Diurnal periodicity in the phytoplankton assemblage of a high mountain lake // Limnol. Oceanogr. 1973. V.18. P. 15–30. https://doi.org/10.4319/lo.1973.18.1.0015
- Vancanneyt M., Schut F., Snauwaert C., Goris J., Swings J., Gottschal J. C. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment // Int. J. Syst. Evol. Microbiol. 2001. V. 51. P. 73–79. https://doi.org/10.1099/00207713-51-1-73
- Vaughan D. G., Comiso J. C., Allison I., Stocker T. F., Qin D., Plattner G. K. Observations: Cryosphere // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. Stocker T. F., Qin D., Plattner G.-K., et al. Cambridge, NY.: Cambridge University Press, 2013. P. 335–344.
- Vila-Costa M., Barberan A., Auguet J. C., Sharma S., Moran M. A., Casamayor E. O. Bacterial and archaeal community structure in the surface microlayer of high mountain lakes examined under two atmospheric aerosol loading scenarios // FEMS Microbiol. Ecol. 2013. V. 84. P. 387–397. https://doi.org/10.1111/1574-6941.12068
- Zagarese H. E., Feldman M., Williamson C. E. UV-B-induced damage and photoreactivation in three species of Boeckella (Copepoda, Calanoida) // J. Plankton Res. 1997. V. 19. P. 357–367. https://doi.org/10.1093/plankt/19.3.357
Supplementary files
