Participation of microorganisms in the balance of high-molecular organic compounds in the highly productive system of the Chernavka salt river (Prieltonya region)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the shallow Chernavka River, which flows into the self-sedimentary Lake Elton, the intensity of primary production of phototrophic communities was determined: planktonic – from 0.025 to 0.256 mg C / l ∙ h, benthic – from 9.6 to 12.5 mg C / dm3 ∙ h, algal planktonic and cyanobacterial mats – from 4.6 to 8.76 mg C / dm3 ∙ h. The intensity of dark assimilation of carbon dioxide in water varied from 14 to 31.8 mg C / l ∙ day, and in sediments from 2.6 to 69 mg C / dm3 ∙ day, indicating a high variability of heterotrophic processes. High concentrations of organic compounds were found in surface waters, which for lipids, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons averaged 692, 80 and 0.79 μg/l, respectively. The composition of aliphatic hydrocarbons in sediments was characterized by the presence of planktonic low-molecular homologues n-C15–C17 and a sharp increase in the series of odd high-molecular alkanes, and the composition of polycyclic aromatic hydrocarbons was characterized by an increase in the proportion of naphthalene. The resulting bottom sediment library was dominated by 16S rRNA gene sequences belonging to the phyla Pseudomonadota (69.09%), Bacteroidota (11.64%) and Chloroflexota (7.92%).

Full Text

Restricted Access

About the authors

T. A. Kanapatskiy

Federal Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: timkanap@yandex.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

I. A. Nemirovskaya

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: timkanap@yandex.ru
Russian Federation, Moscow, 117218

A. V. Khramtsova

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: timkanap@yandex.ru
Russian Federation, Moscow, 117218

T. L. Babich

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: timkanap@yandex.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

I. I. Rusanov

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: timkanap@yandex.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

E. E. Zakharova

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: timkanap@yandex.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

N. V. Pimenov

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: timkanap@yandex.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

References

  1. Герасименко Л. М., Некрасова В. К., Орлеанский В. К., Венецкая С. Л., Заварзин Г. А. Первичная продукция галофильных цианобактериальных сообществ // Микробиология. 1989. Т. 58. С. 507–515.
  2. Добрынин Э. Г. Интенсивность фотосинтеза в соленых озерах Крыма // Биология внутренних вод: Информ. бюлл. Л., 1978а. № 37. С. 26–29.
  3. Добрынин Э. Г. Первичная продукция в рапных водоемах Крыма // Биология внутренних вод: Информ. бюлл. Л., 1978б. № 38. С. 20–23.
  4. Земская Т. И., Букин С. В., Ломакина А. В., Павлова О. Н. Микроорганизмы донных отложений Байкала – самого глубокого и древнего озера мира // Микробиология. 2021. Т. 90. C. 286–303.
  5. Zemskaya T. I., Bukin S. V., Lomakina A. V., Pavlova O. N. Microorganisms in the sediments of lake Baikal, the deepest and oldest lake in the world // Microbiology (Moscow). 2021. V. 90. P. 298–313.
  6. Качество морских вод по гидрохимическим показателям / Под ред. Коршенко А. Н. Иваново: ПрессСто, 2022. 240 с.
  7. Медицинская микробиология, вирусология и иммунология: том 1: учебник / Под ред. Зверева В. В., Бойченко М. Н. М.: ГЭОТАР-Медиа, 2016. 448 с.
  8. Намсараев З. Б. Использование коэффициентов поглощения для расчета концентрации хлорофиллов и бактериохлорофиллов // Микробиология. 2009. Т. 78. С. 836–839.
  9. Namsaraev Z. B. Application of extinction coefficients for quantification of chlorophylls and bacteriochlorophylls // Microbiology (Moscow). 2009. V. 78. P. 794–797.
  10. Немировская И. А. Нефть в океане (загрязнение и природные потоки). М.: Научный мир, 2013. 432 с.
  11. Немировская И. А., Островская Е. В., Попова Н. В. Загрязнение углеводородами Волжского бассейна и мелководной части Северного Каспия // Защита окружающей среды в нефтегазовом комплексе. 2017. № 5. С. 203–217.
  12. Номоконова В. И., Зинченко Т. Д., Попченко Т. В. Трофическое состояние соленых рек озера Эльтон // Известия Самарского научного центра Российской академии наук. 2013. Т. 15. № 3 (1). С. 476–483.
  13. Канапацкий Т. А., Самылина О. С., Плотников А. О., Селиванова Е. А., Хлопко Ю. А., Кузнецова А. И., Русанов И. И., Захарова Е. Е., Пименов Н. В. Микробные процессы продукции и деструкции органического вещества в солоноводных реках Приэльтонья (Волгоградская область) // Микробиология. 2018. Т. 87. С. 56–69.
  14. Kanapatskiy T. A., Samylina O. S., Kuznetsova A. I., Rusanov I. I., Zakharova E. E., Pimenov N. V., Plotnikov A. O., Selivanova E. A., Khlopko Y. A. Microbial processes of organic matter production and decomposition in saline rivers of the lake Elton area (Volgograd oblast, Russia) // Microbiology (Moscow). 2018. V. 87. P. 66–78.
  15. Канапацкий Т. А., Самылина О. С., Головатюк Л. В., Русанов И. И., Захарова Е. Е., Кевбрин В. В., Зинченко Т. Д., Пименов Н. В. Продукционный потенциал соленой реки Чернавка (Приэльтонье) // Микробиология. 2024. Т. 93. № 2. С. 122–127.
  16. Kanapatskiy T. A., Samylina O. S., Golovatyuk L. V., Rusanov I. I., Zakharova E. E., Kevbrin V. V., Zinchenko T. D., Pimenov N. V. Production potential of the Chernavka salt river (Elton region) // Microbiology (Moscow). 2024. V. 93. P. 139–144.
  17. Ровинский Ф. Я. Фоновый мониторинг полициклических ароматических углеводородов / Под ред. Ровинский Ф. Я., Теплицкая Т. А., Алексеева Т. А. Л: Гидрометеоиздат, 1988. 224 с.
  18. Саввичев А. С., Русанов И. И., Юсупов С. К., Пименов Н. В., Леин А. Ю., Иванов М. В. Биогеохимический цикл метана в прибрежной зоне и литорали Кандалакшского залива Белого моря // Микробиология. 2004. Т. 73. С. 540–552.
  19. Savvichev A. S., Rusanov I. I., Yusupov S. K., Pimenov N. V., Ivanov M. V., Lein A.Yu. The biogeochemical cycle of methane in the coastal zone and littoral of the Kandalaksha bay of the White Sea // Microbiology (Moscow). 2004. V. 73. P. 457–468.
  20. Темердашев З. А., Павленко Л. Ф., Корпакова И. Г., Ермакова Я. С., Экилик В. С. Генезис углеводородов в воде и донных отложениях Азовского и Черного морей // Экологическая химия. 2017. Т. 26 (2). С. 101–108.
  21. Тимергазина И. Ф., Переходова Л. С. К проблеме биологического окисления нефти и нефтепродуктов углеводородокисляющими микроорганизмами // Нефтегазовая геология. Теория и практика. 2012. Т. 7. № 1. http://www.ngtp.ru/rub/7/16_2012.pdf
  22. Allen J., Danger M., Wetzel C. E., Felten V., Laviale M. Diatom primary production in headwater streams: a limited but essential process // Diatom photosynthesis: from primary production to high‐value molecules / Eds. J.W. Goessling, J. Serôdio, J. Lavaud. Scrivener Publishing LLC, 2024. P. 327–349.
  23. AMAP (Arctic Monitoring and Assessment Programme): Chemicals of Emerging Arctic Concern. 2016. Oslo, Norway, 2017. P. 353.
  24. AMAP. Sources, inputs and concentrations of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, and other contaminants related to oil and gas activities in the arctic. Ch. 4 / Assessment 2007: Oil and Gas Activities in the Arctic – Effects and Potential Effects. V. 2. Oslo: AMAP, 2010. P. 87.
  25. Bak F., Widdel F. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. // Arch. Microbiol. 1986. V. 146. P. 170–176.
  26. Bebout B., Fitzpatrick M., Paerl H. ldentification of the sources and energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of marine microbial mat community // Appl. Environ. Microbiol. 1993. V. 59. P. 1495–1503.
  27. Bebout B. M., Paerl H. W., Crocker K. M., Prufert L. E. Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community // Appl. Environ. Microbiol. 1987. V. 53. P. 2353–2362.
  28. Bauld J., Chambers L. A., Skyring G. W. Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelin Pool, Shark Bay, W.A. // Aust. J. Mar. Freshwater Res. 1979. V. 30. P. 753–764.
  29. Behera P., Mohapatra M., Kimb J. Y., Rastogi G. Benthic archaeal community structure and carbon metabolic profiling of heterotrophic microbial communities in brackish sediments // Sci. Total. Environ. 2020. V. 706. Art. 135709.
  30. Carls M. G., Short J. W., Payne J. Accumulation of polycyclic aromatic hydrocarbons by Neocalanus copepods in Port Valdez, Alaska // Mar. Pollut. Bull. 2006. V. 52. P. 1480–1489.
  31. Caumette P., Baulaigue R., Matheron R. Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium // Arch. Microbiol. 1991. V. 155. P. 170–176.
  32. Dennis M., Kolattukudy P. E. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 5306–5310.
  33. Egger M., Lenstra W., Jong D., Meysman F., Sapart C., Veen C., Röckmann T., Gonzalez S., Slomp C. Rapid sediment accumulation results in high methane effluxes from coastal sediments // PLoS One. 2016. V. 11. Art. E0161609.
  34. Fadrosh D. W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R. M., Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform // Microbiome. 2014. V. 2. Art. 6. https://doi.org/10.1186/2049-2618-2-6
  35. Galushko A., Rozanova E. P. Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids and ketones // Microbiology (Moscow). 1991. V. 60. P. 742–746.
  36. Golovatyuk L. V., Prokin A. A., Nazarova L. B., Zinchenko T. D. Biodiversity, distribution and production of macrozoobenthos communities in the saline Chernavka River (Lake Elton basin, South-West Russia) // Limnology. 2022. V. 23. № 2. P. 337–353.
  37. Gordadze G. N., Giruts M. V., Poshibaeva A. R., Postnikova O. V., Poshibaev V. V., Antipova O. A., Rudakovskaya S.Yu., Koshelev V. N., Martynov V. G. Carbonate reservoir as a source rock // J. Sib. Fed. UniV. Chem. 2018. V. 4. P. 575–592.
  38. Gavrilov S. N., Korzhenkov A. A., Kublanov I. V., Bargiela R., Zamana L. V., Popova A. A., Toshchakov S. V., Golyshin P. N., Golyshina O. V. Microbial communities of polymetallic deposits’ acidic ecosystems of continental climatic zone with high temperature contrasts // Front. Microbiol. 2019. V. 10. Art. 1573. https://doi.org/10.3389/fmicb.2019.01573
  39. Gusakov V. A., Makhutova O. N., Gladyshev M. I., Golovatyuk L. V., Zinchenko T. D. Ecological Role of Cyprideis torosa and Heterocypris salina (Crustacea, Ostracoda) in saline rivers of the Lake Elton basin: abundance, biomass, production, fatty acids // Zool. Stud. 2021. V. 60. № 53. P. 5–16.
  40. Han Y., Perner M. The globally widespread genus Sulfurimonas: versatileenergy metabolisms and adaptations toredox clines // Front. Microbiol. 2015. V. 6. Art. 989.
  41. Hammer U. T. Primary production in saline lakes // Hydrobiologia. 1981. V. 81. P. 47–57.
  42. Huber H., Hohn M. J., Rachel R., Fuchs T., Wimmer V. C., Stetter K. O. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont // Nature. 2002. V. 417. P. 63–67.
  43. Inagaki F., Takai K., Kobayashi H., Nealson K. H., Horikoshi K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough // Int. J. Syst. Evol. Microbiol. 2003. V. 53. P. 1801–1805.
  44. Intergovernmental Oceanographic Commission. Manual for monitoring oil and dissolved/dispersed petroleum hydrocarbons in marine waters and on beaches. Paris, France, 1984. UNESCO, P. 35. (Intergovernmental Oceanographic Commission Manuals and Guides; 13).
  45. Kumar P. A., Srinivas T. N.R., Thiel V., Tank M., Sasikala Ch., Ramana Ch.V., Imhoff J. F. Thiohalocapsa marina sp. nov., from an Indian marine aquaculture pond // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 2333–2338.
  46. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake // Int. J. Syst. Bacteriol. 1999. V. 49. P. 137–147.
  47. Lein A.Yu., Pimenov N., Guillou C., Martin J.-M., Lancelot C., Rusanov I., Yusupov S., Miller Yu., Ivanov M. Seasonal dynamics of the sulphate reduction rate on the north-western Black Sea shelf // Estuar. Coast. Shelf Sci. 2002. V. 54. P. 385–401.
  48. Metzger P., Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids // Appl. Microbiol. Biotechnol. 2005. V. 66. P. 486–496.
  49. Narasingarao P., Häggblom M. M. Sedimenticola selenatireducens, gen. nov., sp. nov., an anaerobic selenate-respiring bacterium isolated from estuarine sediment // Syst. Appl. Microbiol. 2006. V. 29. P. 382–388.
  50. Oren A., Garrity G. M. Valid publication of the names of forty-two phyla of prokaryotes // Int. J. Syst. Evol. Microbiol. 2021. V. 71. Art. 005056.
  51. Paerl H., Joye S., Fitzpatrick M. Evaluation of nutrient limitation of CO2 and N, fixation in marine microbial mats // Mar. Ecol. Prog. Ser. 1993. V. 101. P. 297–306.
  52. Peters K. E., Walters C. C., Moldowan J. M. The biomarker guide: biomarkers and isotopes in petroleum systems and Earth history. Cambridge: Cambridge UniV. Press, 2005.
  53. Pimenov N. V., Bonch-Osmoloyskaya E.A. In situ activity studies in thermal environments // Methods in microbiology / Eds. Rainey F. and Oren A. London, UK: Elsevier, 2006. V. 35. P. 29–53.
  54. Pinckney J. L., Paerl H. W., Bebout B. Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon // J. Exp. Mar. Biol. Ecol. 1995. V. 187. P. 223–237.
  55. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2013. V. D41. P. D590–D596.
  56. Rinke C., Schmitz-Esser S., Stoecker K., Nussbaumer A. D., Molnar D. A., Vanura K., Wagner M., Horn M., Ott J. A., Bright M. “Candidatus Thiobios zoothamnicoli,” an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum // Appl. Environ. Microbiol. 2006. V. 72. P. 2014–2021.
  57. Rude M. A., Baron T. S., Brubaker S., Alibhai M., Del Cardayre S. B., Schirmer A. Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species // Appl. Environ. Microbiol. 2011. V. 77. P. 1718–1727.
  58. Saliot A., Goutx M., Fevrier A., Tusseau D., Andrie C. Organic sedimentation in the water column in the Arabian sea: relationship between the lipid composition of small and large-size, surface and deep particles // Marine Chem. 1982. V. 11. P. 257–278.
  59. Shakeel T., Fatma Z., Fatma T., Shams Yazdani S. Heterogeneity of alkane chain length in freshwater and marine cyanobacteria // Front. Bioeng. Biotechnol. 2015. V. 3. Art. 34.
  60. Silveira R., Silva M. R.S.S., de Roure Bandeira de Mello T., Cunha Carvalho Alvim E. A., Santos-Marques N.C., Kruger R. H., da Cunha Bustamante M. M. Bacteria and archaea communities in cerrado natural pond sediments // Microb. Ecol. 2020. V. 81. P. 563–578.
  61. Sorigué D., Légeret B., Cuiné S., Morales P., Mirabella B., Guédeney G., Li-Beisson Y., Jetter R., Peltier G., Beisson F. Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway // Plant Physiol. 2016. V. 171. P. 2393–2405.
  62. Sorokin Y. I., Zakuskina O. Y. Acid-labile sulfides in shallow marine bottom sediments: a review of the impact on ecosystems in the Azov Sea, the NE Black Sea shelf and NW Adriatic lagoons // Estuar. Coast. Shelf Sci. 2012. V. 98. P. 42–48.
  63. Suzuki D., Li Z., Cui X., Zhang C., Katayama A. Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. noV. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. // Int. J. Syst. Evol. Microbiol. 2014. V. 64. P. 3081–3086.
  64. Takahashi S., Tomita J., Nishioka K., Hisada T., Nishijima M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing // PLoS One. 2014. V. 9. Art. e105592.
  65. Tolosa I., de Mora S., Sheikholeslami M. R., Villeneuve J.-P., Bartocci J., Cattini C. Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments // Marine Pollut. Bull. 2004. V. 48. P. 44–60.
  66. Vigneron A., Cruaud P., Lovejoy C., Vincent W. F. Genomic insights into cryptic cycles of microbial hydrocarbon production and degradation in contiguous freshwater and marine microbiomes // Microbiome. 2023. V. 11. Art. 104.
  67. Wang B., Sun F., Lai Q., Du Y., Liu X., Li G., Luo J., Shao Z. Roseovarius nanhaiticus sp. nov., a member of the Roseobacter clade isolated from marine sediment // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 1289–1295.
  68. Yunker М. В., Macdonald R. W., Ross P. S., Johannessen S. C., Dangerfield N. Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada // Organic Geochem. 2015. V. 89–90. P. 80–116.
  69. Yusupova A. A., Giruts M. V., Gordadze G. N. Prokaryotes as a source of petroleum hydrocarbons // Dokl. Earth Sci. 2021. V. 497. Р. 211–216.
  70. Zhuang L., Luo L. Roseovarius spongiae sp. nov., a bacterium isolated from marine sponge // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 274–281.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the location of sampling stations.

Download (1MB)
3. Fig. 2. Primary production in planktonic communities, μg C/l ∙ h (a); benthic (st. 1 and st. 2), algal (st. 4.1) and cyanobacterial (st. 4.2) communities (μg C/dm3 ∙ h) (b). The dots indicate the biomass of phototrophic communities with values ​​on the right axis (st. 4.1 – no data), mg hlf a/l and mg hlf a/m2.

Download (143KB)
4. Fig. 3. Dark assimilation of carbon dioxide (DAC) in the Chernavka River in plankton, benthic communities and bottom sediments, mg C/l ∙ day for water and mg C/dm3 ∙ day for sediments. 1 – station 1; 2 – station 2; 3 – station 3; 4 – station 4.1; 5 – station 4.2.

Download (155KB)
5. Fig. 4. Composition of alkanes at individual stations in surface waters (a): 1 – station 1; 2 – station 2; 3 – station 4.2 and in the surface layer of bottom sediments (b): 4 – station 1 (horizon 0–1); 5 – station 2 (0–1); 6 – station 4.2 (horizon 0–2).

Download (293KB)
6. Fig. 5. Distribution in bottom sediments (a): 1 – AHC and 2 – Corg with burial depth; composition of PAHs at individual horizons (b): 3 – st. 1 (horizon 0–2); 4 – st. 2 (horizon 0–1); 5 – st. 3 (horizon 0–2); 6 – st. 4.2 (horizons 2–5). Designations: NAP – naphthalene; 1-MeNAP – 1-methylnaphthalene; 2-MeNAP – 2-methylnaphthalene; ACNP – acenaphthene; FLR – fluorene; PHEN – phenanthrene; ANTR – anthracene; FL – fluoranthene; PR – pyrene; BaN – benz(a)anthracene; CR – chrysene; BeP – benz(e)pyrene; BBF – benz(b)fluoranthene; BkF – benz(k)fluoranthene; BaP – benz(a)pyrene; DBA – dibenz(a,h)anthracene; BPL – benz(g,h,i)perylene; INP – indeno[1,2,3-c,d]pyrene; PRL – perylene.

Download (351KB)
7. Fig. 6. Heat map of the diversity of the prokaryotic community in the bottom sediment sample of the Chernavka River at the level of the most represented phyla based on the results of high-throughput sequencing of the V3–V4 region of the 16S rRNA gene. The color transition from red to green corresponds to an increase in the relative content of individual phyla in the library from less represented to more represented. The numbers indicate the % of the total number of sequences in the library.

Download (530KB)
8. Fig. 7. Distribution of bacteria at the level of families (a) and genera (b) in the library of a sample from the bottom sediments of the Chernavka River based on the results of high-throughput sequencing of the V3–V4 region of the 16S rRNA gene (the percentage of occurrence in the library is more than 1%).

Download (578KB)
9. Fig. 8. Calculation of the formation of OM (under 1 m2) in the water column (highlighted in blue), benthic communities (highlighted in green), algal community of station 4.1 (shaded area).

Download (76KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».