Genome Mapping of RNA‒DNA Hybrids in Escherichia coli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have mapped RNA‒DNA hybrids in the prokaryotic genome for the first time. Using the S9.6 antibody immunoprecipitation method (S9.6-DRIP) followed by whole-genome sequencing, we identified 219 unique peaks of RNA‒DNA hybrids in the genome of Escherichia coli TOP10. These peaks corresponded to 219 different genes and were predominantly distributed in the coding regions of the genome (88.12%). Analysis of individual genes containing RNA‒DNA hybrids revealed that they encode enzymes involved in important energy and metabolic processes in prokaryotes, such as lipoic acid synthesis.

About the authors

K. Y. Oleynikova

K.G. Skryabin Institute of Bioengineering, FRC Fundamentals of Biotechnology of the Russian Academy of Sciences

Email: nzhigalova@gmail.com
119071, Moscow

A. S. Ruzov

K.G. Skryabin Institute of Bioengineering, FRC Fundamentals of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: nzhigalova@gmail.com
119071, Moscow

N. A. Zhigalova

K.G. Skryabin Institute of Bioengineering, FRC Fundamentals of Biotechnology of the Russian Academy of Sciences

Email: nzhigalova@gmail.com
119071, Moscow

References

  1. Abakir A., Giles T. C., Cristini A., Foster J. M., Dai N., Starczak M., Crutchley J., Flatt L., Young L., Gaffney D. J., Denning C., Dalhus B., Emes R. D., Gackowski D., Corrêa I. R. Jr., Garcia-Perez J.L., Klungland A., Gromak N., Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells // Nat. Genet. 2020. V. 1. P. 48‒55. https://doi.org/10.1038/s41588-019-0549-x
  2. Boguslawski S. J., Smith D. E., Michalak M. A., Mickelson K. E., Yehle C. O., Patterson W. L., Carrico R. J. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids // J. Immunol. Methods. 1986. V. 89. P. 123–130. https://doi.org/10.1016/0022-1759(86)90040-2
  3. Brochu J., Vlachos-Breton E.Â., Sutherland S., Martel M., Drolet M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli // PLoS Genet. 2018. V. 14. Art. e1007668. https://doi.org/10.1371/journal.pgen.1007668
  4. Drolet M., Phoenix P., Menzel R., Masse E., Liu L. F., Crouch R. J. Overexpression of RNase H partially complements the growth defect of an Escherichia coli ΔtopA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 3526‒3530. https://doi.org/10.1073/pnas.92.8.3526
  5. Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report // Bioinformatics. 2016. V. 32. P. 3047‒3048. https://doi.org/10.1093/bioinformatics/btw354
  6. Gan W., Guan Z., Liu J., Gui T., Shen K., Manley J. L., Li X. R-loop-mediated genomic instability is caused by impairment of replication fork progression // Genes Dev. 2011. V. 25. P. 2041–2056. https://doi.org/10.1101/gad.17010011
  7. Garcia-Muse T., Aguilera A. R loops: from physiological to pathological roles // Cell. 2019. V. 179. P. 604–618. https://doi.org/10.1016/j.cell.2019.08.055
  8. Ginno P. A., Lott P. L., Christensen H. C., Korf I., Chédin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters // Mol. Cell. 2012. V. 45. P. 814–825. https://doi.org/10.1016/j.molcel.2012.01.017
  9. Holt I. J. R-loops and mitochondrial DNA metabolism // Methods Mol. Biol. 2022. V. 2022:2528. P. 173‒202. https://doi.org/10.1007/978-1-0716-2477-7_12
  10. Huertas P., Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination // Mol. Cell. 2003. V. 12. P. 711‒721. https://doi.org/10.1016/j.molcel.2003.08.010
  11. Jenuth J. P. The NCBI. Publicly available tools and resources on the web // Bioinformatics methods and protocols. Methods in Molecular Biology™ / Eds. Misener S., Krawetz S. A. V. 132. Totowa, NJ: Humana Press, 1999. P. 301‒312. https://doi.org/10.1385/1-59259-192-2:301
  12. Jordan S. W., Cronan J. E., Jr. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein: protein transferase // J. Bacteriol. 2003. V. 185. P. 1582–1589. https://doi.org/10.1128/JB.185.5.1582-1589.2003
  13. Kim S., Kim Y., Yoon S. Y. Overexpression of YbeD in Escherichia coli enhances thermotolerance // J. Microbiol. Biotechnol. 2019. V. 29. P. 401‒409. https://doi.org/10.4014/jmb.1901.01036
  14. Kozlov G., Elias D., Semesi A., Yee A., Cygler M., Gehring K. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains // J. Bacteriol. 2004. V. 186. P. 8083–8088. https://doi.org/10.1128/jb.186.23.8083-8088.2004
  15. Leela J. K., Raghunathan N., Gowrishankar J. Topoisomerase I essentiality, DnaA-independent chromosomal replication, and transcription-replication conflict in Escherichia coli // J. Bacteriol. 2021. V. 203. Art. e0019521. https://doi.org/10.1128/jb.00195-21
  16. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools // Bioinformatics. 2009. V. 25 P. 2078‒2079. https://doi.org/10.1093/bioinformatics/btp352
  17. Li R., Liu B., Yuan X., Chen Z. A bibliometric analysis of research on R-loop: landscapes, highlights and trending topics // DNA Repair (Amst). 2023. V. 127. Art. 103502. https://doi.org/10.1016/j.dnarep.2023.103502
  18. Raghunathan N., Kapshikar R. M., Leela J. K., Mallikarjun J., Bouloc P., Gowrishankar J. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli // Nucleic Acids Res. 2018. V. 46. P. 3400–3411. https://doi.org/10.1093/nar/gky118
  19. Ramírez F., Dündar F., Diehl S., Grüning B.A., Manke T. deepTools: a flexible platform for exploring deep-sequencing data // Nucleic Acids Res. 2014. V. 42 (W1). P. W187‒W191. https://doi.org/10.1093/nar/gku365
  20. Renaudin X., Venkitaraman A. R. A mitochondrial response to oxidative stress mediated by unscheduled RNA‒DNA hybrids (R-loops) // Mol. Cell. Oncol. 2021. V. 8. Art. 2007028. https://doi.org/10.1080/23723556.2021.2007028
  21. Sanz L. A., Hartono S. R., Lim Y. W., Steyaert S., Rajpurkar A., Ginno P. A., Xu X., Chédin F. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals // Mol. Cell. 2016. V. 63. P. 167‒178. https://doi.org/10.1016/j.molcel.2016.05.032
  22. Skourti-Stathaki K., Proudfoot N. J., Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination // Mol Cell. 2011. V. 42. P. 794‒805. https://doi.org/10.1016/j.molcel.2011.04.026
  23. Thomas M., White R. L., Davis R. W. Hybridization of RNA to double-stranded DNA: formation of R-loops // Proc. Natl. Acad. Sci. USA. 1976. V. 73. P. 2294‒2298. https://doi.org/10.1073/pnas.73.7.2294
  24. Tripathi D., Oldenburg D. J., Bendich A. J. Ribonucleotide and R-loop damage in plastid DNA and mitochondrial DNA during maize development // Plants (Basel). 2023. V. 12. Art. 3161. https://doi.org/10.3390/plants12173161
  25. Xu W., Xu H., Li K., Fan Y., Liu Y., Yang X., Sun Q. The R-loop is a common chromatin feature of the Arabidopsis genome // Nature Plants. 2017. V. 3. P. 704‒714. https://doi.org/10.1038/s41477-017-0004-x
  26. Yu G., Wang L. G., He Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization // Bioinformatics. 2015. V. 31. P. 2382‒2383. https://doi.org/10.1093/bioinformatics/btv145
  27. Zeller P., Padeken J., van Schendel R., Kalck V., Tijsterman M., Gasser S. M. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability // Nature Genet. 2016. V. 48. P. 1385‒1395. https://doi.org/10.1038/ng.3672
  28. Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., Liu X. S. Model-based analysis of ChIP-Seq (MACS) // Genome Biol. 2008. V. 9. Art. R137. P. 1‒9. https://doi.org/10.1186/gb-2008-9-9-r137

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».