Xerotolerant microorganisms-producers of exopolysaccharides and potential of their use in agricultural technologies
- Authors: Kondrasheva K.V.1, Yakimov M.M.2, La Cono V.L.2, Gavrilov S.N.3, Kalenov S.V.4, Tozhieva M.B.1, Davranov K.D.1
-
Affiliations:
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan
- Institute of Polar Research, CNR
- S.N. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences
- Department of Biotechnology, D.I. Mendeleyev University of Chemical Technology of Russia
- Issue: Vol 94, No 5 (2025)
- Pages: 363-374
- Section: REVIEWS
- URL: https://journal-vniispk.ru/0026-3656/article/view/317079
- DOI: https://doi.org/10.7868/S3034546425050016
- ID: 317079
Cite item
Abstract
About the authors
K. V. Kondrasheva
Institute of Microbiology of the Academy of Sciences of the Republic of UzbekistanTashkent, 100128, Uzbekistan
M. M. Yakimov
Institute of Polar Research, CNRMessina, 98122, Italy
V. L. La Cono
Institute of Polar Research, CNRMessina, 98122, Italy
S. N. Gavrilov
S.N. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences
Email: sngavrilov@gmail.com
Moscow, 117312, Russia
S. V. Kalenov
Department of Biotechnology, D.I. Mendeleyev University of Chemical Technology of RussiaMoscow, 125480, Russia
M. B. Tozhieva
Institute of Microbiology of the Academy of Sciences of the Republic of UzbekistanTashkent, 100128, Uzbekistan
K. D. Davranov
Institute of Microbiology of the Academy of Sciences of the Republic of UzbekistanTashkent, 100128, Uzbekistan
References
- Кузиев К. Ф. Региональные особенности развития сельского хозяйства в Узбекистане в условиях дефицита водных ресурсов // Региональная экономика: теория и практика. 2018. Т. 16. С. 711–723. https://doi.org/10.24891/re.16.4.711
- Мадалиев Т. А., Косимов М. Г., Абролов А. А. Биоразведка бактерий-продуцентов экзополисахаридов из различных природных экосистем для синтеза биополимеров из барды // Universum: химия и биология: электрон. научн. журн. 2020. Т. l. № 12 (78). https://7universum.com/ru/nature/archive/item/10996
- Мягкова Н. В. Экологические аспекты изменения климата в Узбекистане // Universum: Технические науки: электрон. научн. журн. 2019. Т. 2 (59).
- Национальный доклад о состоянии окружающей среды: Узбекистан. Международный институт устойчивого развития. Министерство экологии, охраны окружающей среды и изменения климата Республики Узбекистан. 2023/ https://www.iisd.org/system/files/2024-02/uzbekistan-state-of-the-environment-ru.pdf
- Патент РФ. 2025. № 2835165.
- Черных Н. А., Меркель А. Ю., Кондрашева К. В., Алимов Ж. Э., Клюкина А. А., Бонч-Осмоловская Е.А., Слободкин А. И., Давранов К. Д. У берегов исчезающего моря: микробные сообщества Арала и южного Приаралья // Микробиология. 2024. Т. 93. С. 3‒16. https://doi.org/10.31857/S0026365624010035
- Chernyh N. A., Merkel A. Y., Kondrasheva K. V., Alimov J. E., Klyukina A. A., Bonch-Osmolovskaya E.A., Slobodkin A. I., Davranov K. D. At the shores of a vanishing sea: microbial communities of Aral and Southern Aral Sea region // Microbiology (Moscow). 2024. V. 93. Р. 1–13. https://doi.org/10.1134/S0026261723602944
- Adessi A., de Carvalho R. C., De Philippis R., Branquinho C., da Silva J. M. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts // Soil Biol. Biochem. 2018. V. 116. Р. 67–69.
- An H., Li Q. L., Yan X., Wu X. Z., Liu R. T., Fang Y. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, northwest China // Ecol. Eng. 2019. V. 127. Р. 348–355.
- Ankita G., Diksha S., Moumita Ch., Rai J. P.N. Mechanism and application of bacterial exopolysaccharides: an advanced approach for sustainable heavy metal abolition from soil // Carbohydr. Res. 2024. V. 544. Art. 109247. https://doi.org/10.1016/j.carres.2024.109247
- Arias S., del Moral A., Ferrer M. R., Tallon R., Quesada E., Béjar V. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology // Extremophiles. 2003. V. 7. Р. 319–326. https://doi.org/10.1007/s00792-003-0325-8
- Balducci E., Papi F., Capialbi D. E., Del Bino L. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens // Int. J. Mol. Sci. 2023. V. 24. Art. 4030. https://doi.org/10.3390/ijms24044030
- Banerjee A., Sarkar S., Govil T., González-Faune P., Cabrera-Barjas G., Bandopadhyay R., Salem D. R., Sani R. K. Extremophilic exopolysaccharides: biotechnologies and wastewater remediation // Front. Microbiol. 2021. V. 12. Art. 721365. https://doi.org/10.3389/fmicb.2021.721365
- Barrientos-Sanhueza C., Cargnino-Cisternas D., Díaz-Barrera A., Cuneo I. F. Bacterial alginate-based hydrogel reduces hydro-mechanical soil-related problems in agriculture facing climate change // Polymers. 2022. V. 14. Art. 922. https://doi.org/10.3390/polym14050922
- Battista J. R. Against all odds: the survival strategies of Deinococcus radiodurans // Annu. Rev. Microbiol. 1997. V. 51. Р. 203–224. https://doi.org/10.1146/annurev.micro.51.1.203
- Berezina O. V., Rykov S. V., Schwarz W. H., Liebl W. Xanthan: enzymatic degradation and novel perspectives of applications // Appl. Microbiol. Biotechnol. 2024. V. 108. Art. 227. https://doi.org/10.1007/s00253-024-13016-6
- Berninger T., Dietz N., González López Ó. Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics // Microb. Biotechnol. 2021. V. 14. P. 1881–1896. https://doi.org/10.1111/1751-7915.13867
- Bowker G. E., Gillette D. A., Bergametti G., Marticorena B., Heist D. K. Sand flux simulations at a small scale over a heterogeneous mesquite area of the northern Chihuahuan Desert // J. Appl. Meteorol. Climatol. 2007. V. 46. Р. 1410–1422.
- Cao S. Why large-scale afforestation efforts in China have failed to solve the desertification problem // Environ. Sci. Technol. 2008. V. 42. Р. 1826–1831. https://doi.org/10.1021/es0870597.
- Cao S., Chen L., Shankman D., Wang C., Wang X., Zhang H. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration // Earth-Sci. Rev. 2011. V. 104. Р. 240–245.
- Cao H., Du Y., Gao G., Rao L., Ding G., Zhang Y. Afforestation with Pinus sylvestris var. mongolica remodelled soil bacterial community and potential metabolic function in the Horqin Desert // Glob. Ecol. Conserv. 2021. V. 29. Art. e01716.
- Cao R., Zhang Y., Ju Y., Wang W., Zhao Y., Liu N., Zhang G., Wang X., Xie X., Dai C., Liu Y., Yin H., Shi K., He C., Wang W., Zhao L., Jeon C. O., Hao L. Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.) // Front. Microbiol. 2023. V. 14. Art. 1117312. https://doi.org/10.3389/fmicb.2023.1117312
- Chambi D., Soto L. A.R., Villca R., Orozco F. Exopolysaccharides production by cultivating a bacterial isolate from the hypersaline environment of salar De Uyuni (Bolivia) in pretreatment liquids of steam-exploded quinoa stalks and enzymatic hydrolysates of curupaú sawdust // Fermentation. 2021. V. 7. Art. 33. https://doi.org/10.3390/fermentation7010033
- Chaudhari V., Buttar H. S., Bagwe-Parab S., Tuli H. S., Vora A., Kaur G. Therapeutic and industrial applications of curdlan with overview on its recent patents // Front. Nutr. 2021. V. 28. Art. 646988. https://doi.org/10.3389/fnut.2021.646988
- Chenard C., Lauro F. M. Microbial Ecology of extreme environments / Eds. Chenard C., Lauro F. M. 2017. Springer: Switzerland. 245 P. http://dx.doi.org/10.1007/978-3-319-51686-8
- Choi S. M., Rao K. M., Zo S. M., Shin E. J., Han S. S. Bacterial cellulose and its applications // Polymers (Basel). 2022. V. 14. Art. 1080. https://doi.org/10.3390/polym14061080
- Claus D., Hempel W. Specific substrates for isolation and differentiation of Azotobacter vinelandii // Arch. Mikrobiol. 1970. V. 73. P. 90–96. https://doi.org/10.1007/bf00409955
- Díaz-Montes E. Dextran: sources, structures, and properties // Polysaccharides. 2021. V. 2. P. 554–565. https://doi.org/10.3390/polysaccharides2030033
- D’Odorico P., Bhattachan A., Davis K. F., Ravi S., Runyan C. W. Global desertification: drivers and feedbacks // Adv. Water Resour. 2013. V. 51. P. 326–344. https://doi.org/10.1016/j.advwatres.2012.01.013
- Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments // Int. J. Syst. Evol. Microbiol. 1995. V. 45. Р. 116–123.
- Egamberdieva D., Wirth S., Bellingrath-Kimura D.S., Mishra J., Arora N. K. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils // Front. Microbiol. 2019. V. 10. Art. 2791.
- Feng Q., Ma H., Jiang X., Wang X., Cao S. What has caused desertification in China? // Sci. Rep. 2015. V. 5. Art. 15998.
- Gan L., Huang X., He Zh., He T. Exopolysaccharide production by salt-tolerant bacteria: recent advances, current challenges, and future prospects // Int. J. Biol. Macromol. 2024. V. 264. Art. 130731. https://doi.org/10.1016/j.ijbiomac.2024.130731
- Guan X., Huang J. Constructing semi-arid ecological barriers to prevent desertification // The Innovation Geoscience. 2024. V. 2. Art. 100067. https://doi.org/10.59717/j.xinn-geo.2024.100067
- Ghosh A., Sah D., Chakraborty M., Rai J. P.N. Mechanism and application of bacterial exopolysaccharides: an advanced approach for sustainable heavy metal abolition from soil // Carbohydr. Res. 2024. V. 544. Art. 109247. https://doi.org/10.1016/j.carres.2024.109247
- Hernández-Canseco J., Bautista-Cruz A., Sánchez-Mendoza S., Aquino-Bolaños T., Sánchez-Medina P.S. Plant growth-promoting halobacteria and their ability to protect crops from abiotic stress: an eco-friendly alternative for saline soils // Agronomy. 2022. V. 12. Art. 804.
- IPCC2019: Zhu S., Cai B., Fang S., Zhu J., Gao Q. The development and influence of IPCC guidelines for national greenhouse gas inventories // In annual report on actions to address climate change (2019) Climate risk prevention. Singapore: Springer Nature Singapore, 2023. P. 233–246.
- Isfahani F. M., Tahmourespour A., Hoodaji M., Ataabadi M., Mohammadi A. Characterizing the new bacterial isolates of high yielding exopolysaccharides under hypersaline conditions // J. Clean. Prod. 2018. V. 185. P. 922–928. https://doi.org/10.1016/j.jclepro.2018.03.030
- Kaur N., Dey P. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications // Res. Microbiol. 2022. V. 29. Art. 104024. https://doi.org/10.1016/j.resmic.2022.104024
- Khalid M. Y., Arif Z. U. Novel biopolymer-based sustainable composites for food packaging applications: a narrative review // Food Packag. Shelf Life. 2022. V. 33. Art. 100892. https://doi.org/10.1016/j.fpsl.2022.100892
- Kharangate-Lad A., Bhosle S. Characterization of bioemulsifying EPS from Halobacillus trueperi MXM-16, a halophilic adhered bacterial isolate from the mangrove ecosystem // J. Basic Microbiol. 2022. V. 62. Р. 1446–1456.
- Knowles E. J., Castenholz R. W. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms // FEMS Microbiol. Ecol. 2008. V. 66. P. 261–270. https://doi.org/10.1111/j.1574-6941.2008.00568.x
- Kulonov A., Mirzarakhmetova D., Turaeva N. Obtaining of bacterial polysaccharides // Chem. Chemic. Eng. 2020. V. 4. Art. 11. https://doi.org/10.51348/YOTA9343
- Lalebeigi F., Alimohamadi A., Afarin S., Aliabadi H. A.M., Mahdavi M., Farahbakhshpour F., Hashemiava N., Khandani K. K., Eivazzadeh-Keihan R., Maleki A. Recent advances on biomedical applications of gellan gum: a review // Carbohydr. Polym. 2024. V. 15. Art. 122008. https://doi.org/10.1016/j.carbpol.2024.122008
- Lan S., Wu L., Zhang D., Hu C. Assessing level of development and successional stages in biological soil crusts with biological indicators // Microb. Ecol. 2013. V. 66. P. 394–403.
- Leang C., Malvankar N. S., Franks A. E., Nevin K. P., Lovley D. R. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production // Energy Environ. Sci. 2013. V. 6. P. 1901–1908.
- Lebre P. H., De Maayer P., Cowan D. A. Xerotolerant bacteria: surviving through a dry spell // Nat. Rev. Microbiol. 2017. V. 15. P. 285–296. https://doi.org/10.1038/nrmicro.2017
- Li X. R., Xiao H. L., He M. Z., Zhang J. G. Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions // Ecol. Eng. 2006. V. 28. № 2. Р. 149–157.
- Lin Sh.M., Chan Y. B., Jung J. H., Kim W. S., Song H. Y., Lee J.H., Ji H. J., Yong Z., Bo S. K., Bahn Y. S., Ho S. S., Lim S. Antioxidant Activities of an Exopolysaccharide (DeinoPol) Produced by the Extreme Radiation-Resistant Bacterium Deinococcus radiodurans // Sci. Rep. 2020. V. 10: 55. https://doi.org/10.1038/s41598-019-56141-3
- Liu X., Yao T. Types, synthesis pathways, purification, characterization, and agroecological physiological functions of microbial exopolysaccharides: A review // Int. J. Biol. Macromol. 2024. V. 281. № 3: 136317. https://doi.org/10.1016/j.ijbiomac.2024.136317
- Liu L., Liu Y., Li J., Du G., Chen J. Microbial production of hyaluronic acid: current state, challenges, and perspectives // Microb. Cell Fact. 2011. V. 16. № 10:99. https://doi.org/10.1186/1475-2859-10-99
- López-Ortega M.A., Chavarría-Hernández N., López-Cuellar M.A. del R., Rodríguez-Hernández A.I. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse // Int. J. Biol. Macromol. 2021. V. 177. P. 559–577. https://doi.org/10.1016/j.ijbiomac.2021.02.101
- Mager D. M., Thomas A. D. Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes // J. Arid Environ. 2011. V. 75. P. 91–97. https://doi.org/10.1016/j.jaridenv.2010.10.001
- Mata J. A., Béjar V., Bressollier P., Tallon R., Urdaci M. C., Quesada E., Llamas I. Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae // J. Appl. Microbiol. 2008. V. 105. №2. P. 521–528. https://doi.org/10.1111/j.1365-2672.2008.03789.x
- Naseem H., Ahsan M., Shahid M. A., Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance // J. Basic Microbiol. 2018. V. 58. № 12: 100922. https://doi.org/10.1002/jobm.201800309
- Nazli F., Jamil M., Hussain A., Hussain T. Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals // Environ. Monit. Assess., 2020. V. 192 P. 1–16.
- Netrusov A. I., Liyaskina E. V., Kurgaeva I. V., Liyaskina A. U., Yang G., Revin V. V. Exopolysaccharides producing bacteria: a review // Microorganisms. 2023. V. 9. Art. 1541. https://doi.org/10.3390/microorganisms11061541
- Nicolaus B., Kambourova M., Oner E. T. Exopolysaccharides from extremophiles: from fundamentals to biotechnology // Environ. Technol. 2010. V. 31. P. 1145–1158. https://doi.org/10.1080/09593330903552094
- Niu X., Song L., Xiao Y., Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress // Front. Microbiol. 2018. V. 8. Art. 2580. https://doi.org/10.3389/fmicb.2017.02580
- Paul S., Parvez S. S., Goswami A., Banik A. Exopolysaccharides from agriculturally important microorganisms: conferring soil nutrient status and plant health // Int. J. Biol. Macromol. 2024. V. 262. Art. 129954. https://doi.org/10.1016/j.ijbiomac.2024.129954
- Qi M., Zheng C., Wu W., Yu G., Wang P. Exopolysaccharides from marine microbes: source, structure and application // Mar. Drugs. 2022. V. 20. Art. 512. https://doi.org/10.3390/md20080512
- Remminghorst U., Rehm B. H. Bacterial alginates: from biosynthesis to applications // Biotechnol. Lett. 2006. V. 28. P. 1701–1712. https://doi.org/10.1007/s10529-006-9156-x
- Reynolds J. F., Smith D. M.S., Lambin E. F., Turner B., Mortimor, M., Batterbury S. P., Herrick J. E. Global desertification: building a science for dryland development // Science. 2007. V. 316. Р. 847–851.
- Riseh R. S., Fathi F., Vatankhah M., Kennedy J. F. Exploring the role of levan in plant immunity to pathogens: a review // Int. J. Biol. Macromol. 2024. V. 279. Art. 135419. https://doi.org/10.1016/j.ijbiomac.2024.135419
- Rollefson J. B., Stephen C. S., Tien M., Bond D. R. Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens // J. Bacteriol. 2011. V. 193. Art. 1023–1033. https://doi.org/10.1128/JB.01092-10
- Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A. Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy // Syst. Appl. Microbiol. 2005. V. 28. P. 610–618. https://doi.org/10.1016/j.syapm.2005.03.010
- Rossi F., De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats // Life. 2015. V. 5. P. 1218–1238. https://doi.org/10.3390/life5021218
- Ruiz V. V., Luzania R. A.C., Cota F. I.P., Santoyo G., de los Santos Villalobos S. Extracellular polymeric substances from agriculturally important microorganisms // Microbial polymers: applications and ecological perspectives / Eds. Vaishnav A., Choudhary D. K. Singapore: Springer Nature Singapore Pte Ltd., 2021. P. 217–234.
- Saha I., Datta S., Biswas D. Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture // Curr. Microbiol. 2020. V. 77. P. 3224–3239. https://doi.org/10.1007/s00284-020-02169-y
- Saravanan K., Vellingiri K., Kathirvel P. Screening of multi-metal tolerant plant growth promoting bacteria (PGPB) Stutzerimonas stutzeri WA4 and its assistance on phytoextraction of heavy metals (Cu, Ag and Pb) // Int. J. Phytoremed. 2025. V. 27. P. 505–525. https://doi.org/10.1080/15226514.2024.2427384
- Souii A., Hammami K., Ouertani R., Zidi O., Chouchane H., Sghaier H., Masmoudi A. S., Cherif A., Neifar M. Eco-waste of Posidonia oceanica as a reservoir for halophilic cellulolytic bacteria with potentialities for plant growth promotion and waste bioconversion // Biomass Conv. Bioref. 2025. V. 15. P. 8073–8089. https://doi.org/10.1007/s13399-024-05497-2
- Stevenson A., Cray J. A., Williams J. P., Santos R., Sahay R., Neuenkirchen N., McClure C.D., Grant I. R., Houghton J. D., Quinn J. P., Timson D. J., Patil S. V., Singhal R. S., Antón J., Dijksterhuis J., Hocking A. D., Lievens B., Rangel D. E., Voytek M. A., Gunde-Cimerman N., Oren A., Timmis K. N., McGenity T.J., Hallsworth J. E. Is there a common water-activity limit for the three domains of life? // ISME J. 2015. V. 9. P. 1333–1351. https://doi.org/10.1038/ismej.2014.219
- Sunita K., Mishra I., Mishra J., Prakash J., Arora N. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants // Front. Microbiol. 2020. V. 11. Art. 567768.
- Sutherland I. W. Bacterial exopolysaccharides // Adv. Microb. Physiol. 1972. V. 8. P. 143–213. https://doi.org/10.1016/S0065-2911(08)60190-3
- Talbi C., Elmarrkechy S., Youssfi M., Bouzroud S., Belfquih M., Sifou A., Bouhaddou N., Badaoui B., Balahbib A., Bouyahya A., Bourais I. Bacterial exopolysaccharides: from production to functional features // Progr. Microbes Mol. Biol. 2023. V. 6. № 1. https://doi.org/10.36877/pmmb.a0000384
- Upadhyaya Ch., Patel H., Patel I., Upadhyay T. Extremophilic exopolysaccharides: bioprocess and novel applications in 21st century // Fermentation. 2025. V. 11. Art. 16. https://doi.org/10.3390/fermentation11010016
- Vardharajula S., Shaik Z. A. Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress // J. Microbiol. Biotechnol. Food Sci. 2014. V. 4. Р. 51–57. https://doi.org/10.15414/jmbfs.2014.4.1.51-57
- Wang L., D’Odorico P. The limits of water pumps // Science. 2008. V. 321. P. 36‒37.
- Wang J., Salem D. R., Sani R. K. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications // Carbohydr. Polym. 2019. V. 5. P. 8–26. https://doi.org/10.1016/j.carbpol.2018.10.011
- Yakimov M. M., Timmis K. N., Wray V., Fredrickson H. L. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50 // Appl. Environ. Microbiol. 1995. V. 61. Р. 1706–1713.
Supplementary files
