Metabolic Potential of Pseudogymnoascus Spp. Fungi
- Authors: Antipova T.V.1,2, Zhelifonova V.P.1, Dubovik V.R.2, Lukina E.G.2, Hu Q.3, Kochkina G.A.1, Berestetskiy A.O.2
-
Affiliations:
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Centre for Biological Research”, Russian Academy of Sciences
- All-Russian Institute of Plant Protection
- South China Agricultural University
- Issue: Vol 94, No 5 (2025)
- Pages: 426-436
- Section: EXPERIMENTAL ARTICLES
- URL: https://journal-vniispk.ru/0026-3656/article/view/317084
- DOI: https://doi.org/10.7868/S3034546425050063
- ID: 317084
Cite item
Abstract
About the authors
T. V. Antipova
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Centre for Biological Research”, Russian Academy of Sciences; All-Russian Institute of Plant Protection
Email: tatantip@rambler.ru
Pushchino, Moscow Region, 142290, Russia; Pushkin, Saint-Petersburg, 196608, Russia
V. P. Zhelifonova
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Centre for Biological Research”, Russian Academy of SciencesPushchino, Moscow Region, 142290, Russia
V. R. Dubovik
All-Russian Institute of Plant ProtectionPushkin, Saint-Petersburg, 196608, Russia
E. G. Lukina
All-Russian Institute of Plant ProtectionPushkin, Saint-Petersburg, 196608, Russia
Q. Hu
South China Agricultural UniversityGuangzhou, 510642, China
G. A. Kochkina
Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Centre for Biological Research”, Russian Academy of SciencesPushchino, Moscow Region, 142290, Russia
A. O. Berestetskiy
All-Russian Institute of Plant ProtectionPushkin, Saint-Petersburg, 196608, Russia
References
- Желифонова В. П., Антипова Т. В., Козловский А. Г. Биосинтез фумихиназолинов грибом Penicillium thymicola // Прикл. биохимия и микробиология. 2012. Т. 48. С. 334‒339.
- Zhelifonova V. P., Antipova T. V., Kozlovskii A. G. Biosynthesis of fumiquinazolines by the fungus Penicillium thymicola // Appl. Biochem. Microbiol. 2012. V. 48. P. 302–306. https://doi.org/10.1134/S0003683812030179
- Кочкина Г. А., Иванушкина Н. Е., Акимов В. Н., Гиличинский Д. А., Озерская С. М. Галопсихротолерантные грибы рода Geomyces из криопэгов и морских отложений Арктики // Микробиология. 2007. Т. 76. С. 39‒47.
- Kochkina G. A., Ivanushkina N. E., Akimov V. N., Gilichinski D. A., Ozerskaya S. M. Halo- and psychrotolerant Geomyces fungi from arctic cryopegs and marine deposits // Microbiology (Moscow). 2007. V. 76. P. 31–38. https://doi.org/10.1134/S0026261707010055
- Козловский А. Г., Антипова Т. В., Желифонова В. П., Баскунов Б. П., Иванушкина Н. Е., Кочкина Г. А., Озерская С. М. Вторичные метаболиты грибов секции Usti рода Aspergillus и их использование в хемосистематике // Микробиология. 2017. Т. 86. С. 164‒171.
- Kozlovskii A. G., Antipova T. V., Zhelifonova V. P., Baskunov B. P., Ivanushkina N.E, Kochkina G. A., Ozerskaya S. M. Secondary metabolites of fungi of the Usti section, genus Aspergillus and their application in chemosystematics // Microbiology (Moscow). 2017. V. 86. P. 176–182. https://doi.org/10.1134/S0026261717020114
- Aguiar M., Orasch T., Shadkchan Y., Caballero P., Pfister J., Sastré-Velásquez L.E., Gsaller F., Decristoforo C., Osherov N., Haas H. Uptake of the siderophore triacetylfusarinine C, but not fusarinine C, is crucial for virulence of Aspergillus fumigatus // mBio. 2022. V. 13. Art. e02192-22. https://doi.org/10.1128/mbio.02192-22
- Anke H. Metabolic products of microorganisms. 163. Desferritriacetylfusigen, an antibiotic from Aspergillus deflectus // J. Antibiotics. 1977. V. XXX. № 2. P. 125‒128.
- Antipova T. V., Zaitsev K. V., Zhelifonova V. P., Tarlachkov S. V., Grishin Y. K., Kochkina G. A., Vainshtein M. B. The potential of Arctic Pseudogymnoascus fungi in the biosynthesis of natural products // Fermentation. 2023. V. 9. Art. 702. https://doi.org/10.3390/fermentation9080702
- Bills G. F., Gloer J. B. Biologically active secondary metabolites from the fungi // Microbiol. Spectr. 2016. V. 4. № 6. FUNK-0009-2016.
- Bode H. B., Bethe B., Höfs R., Zeeck A. Big effects from small changes: Possible ways to explore nature’s chemical diversity // ChemBioChem. 2002. V. 3. P. 619–627.
- Calixto J. B. The role of natural products in modern drug discovery // An. Acad. Bras. Cienc. 2019. V. 91. Art. e20190105. https://doi.org/10.1590/0001-3765201920190105
- da Silva F. M.R., Paggi G. M., Brust F. R., Macedo A. J., Silva D. B. Metabolomic strategies to improve chemical information from OSMAC studies of endophytic fungi // Metabolites. 2023. V. 13. Art. 236. https://doi.org/10.3390/metabo13020236
- Dalinova A., Fedorov A., Dubovik V., Voitsekhovskaja O., Tyutereva E., Smirnov S., Kochura D., Chisty L., Senderskiy I., Berestetskiy A. Structure–activity relationship of phytotoxic natural 10-membered lactones and their semisynthetic derivatives // J. Fungi. 2021. V. 7. Art. 829. https://doi.org/10.3390/jof7100829
- Das T., Al-Tawaha A.R., Pandey D. K., Nongdam P., Shekhawat M. S., Dey A., Choudhary K., Sahay S. Halophilic, acidophilic, alkaliphilic, metallophilic, and radioresistant fungi: habitats and their living strategies // Extremophilic fungi / Ed. Sahay S. Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-4907-3_9
- Duarte A. W.F., Dos Santos J. A., Vianna M. V., Vieira J. M.F., Mallagutti V. H., Inforsato F. J., Wentzel L. C.P., Lario L. D., Rodrigues A., Pagnocca F. C., Junior A. P., Durães Sette L. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments // Crit. Rev. Biotechnol. 2018. V. 38. P. 600‒619. https://doi.org/10.1080/07388551.2017.1379468
- Ferrara M., Gallo A., Perrone G., Magistà D., Baker S. E. Comparative genomic analysis of ochratoxin A biosynthetic cluster in producing fungi: new evidence of a cyclase gene involvement // Front. Microbiol. 2020. V. 11. Art. 581309. https://doi.org/10.3389/fmicb.2020.581309
- Gomes E. C.Q., Godinho V. M., Silva D. A.S., de Paula M. T.R., Vitoreli G. A., Zani C. L., Alves T. M.A., Junior P. A.S., Murta S. M.F., Barbosa E. C., Oliveira J. G., Oliveira F. S., Carvalho C. R., Ferreira M. C., Rosa C. A., Rosa L. H. Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites // Extremophiles. 2018. V. 22. P. 381–393. https://doi.org/10.1007/s00792-018-1003-1
- Gonçalves V. N., Carvalho C. R., Martins L. B.M., Barreto D. L., da Silva B. F., Queiroz S. C., Tamang P., Bajsa-Hirschel J., Cantrell C. L., Duke S.O, Rosa L. H. Bioactive metabolites produced by fungi present in antarctic, arctic, and alpine ecosystems // Fungi bioactive metabolites: Integration of pharmaceutical applications / Singapore: Springer Nature Singapore, 2024. P. 537‒563.
- Guo Y. Z., Wei Q., Gao J., Liu B. Y., Zhang T., Hua H. M., Hu Y. C. Metabolites of the psychrophilic fungus Pseudogymnoascus pannorum // Nat. Prod. Res. Dev. 2019. V. 31 P. 446–449.
- Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus // Nat. Prod. Rep. 2014. V. 31. P. 1266–1276.
- Hang L., Liu N., Tang Y. Coordinated and iterative enzyme catalysis in fungal polyketide biosynthesis // ACS Catalysis. 2016. V. 6. P. 5935–5945. https://doi.org/10.1021/ACSCATAL.6B01559
- Hautbergue T., Jamin E. L., Debrauwer L., Puel O., Oswald I. P. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites // Nat. Prod. Rep. 2018. V. 35. P. 147‒173.
- Hettiarachchige I. K., Elkins A. C., Reddy P., Mann R. C., Guthridge K. M., Sawbridge T. I., Forster J. W., Spangenberg G. C. Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis // Mol. Genet. Genomics. 2019. V. 294. P. 315‒328. https://doi.org/10.1007/s00438-018-1510-x
- Hider R. C., Kong X. Chemistry and biology of siderophores // Nat. Prod. Rep. 2010. V. 27. P. 637‒657. https://doi.org/10.1039/b906679a
- Hossain M. B. Eng-Wilmot D.L., Loghry R. A. Helm D. Circular dichroism, crystal structure and absolute configuration of the siderophore ferric N,N′,N″- triacetylfusarinine, FeC39H57N6O15 // J. Am. Chem. Soc. 1980. V. 102. P. 5766‒5773. https://doi.org/10.1128/microbiolspec.funk-0009-2016
- Keller N. P. Fungal secondary metabolism: regulation, function and drug discovery // Nat. Rev. Microbiol. 2019. V. 17. P. 167–180. https://doi.org/10.1038/s41579-018-0121-1
- Kessler S. C., Chooi Y. H. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi // Nat. Prod. Rep. 2022. V. 39. Р. 222–230. https://doi.org/10.1039/D1NP00048A
- Kochkina G., Ivanushkina N., Ozerskaya S., Chigineva N., Vasilenko O., Firsov S., Spirina E., Gilichinsky D. Ancient fungi in Antarctic permafrost environments // FEMS Microbiol. Ecol. 2012. V. 82. P. 501–509. https://doi.org/10.1111/j.1574-6941.2012.01442.x
- Kozlovsky A. G., Zhelifonova V. P., Antipova T. V. Penicillium fungi from permafrost: biosynthesis of secondary metabolites, peculiarities of growth and development // Permafrost: distribution, composition, and impact on infrastructure and ecosystems / Ed. Pokrovsky O. S. New York: Nova Science Publishers, 2014. P. 265–280.
- Leushkin E. V., Logacheva M. D., Penin A. A., Sutormin R. A., Gerasimov E. S., Kochkina G. A., Ivanushkina N. E., Vasilenko O. V., Kondrashov A. S., Ozerskaya S. M. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages // BMC Genomics. 2015. V. 16. Art. 400. https://doi.org/10.1186/s12864-015-1570-9
- Medina A., Schmidt-Heydt M., Rodríguez A., Parra R., Geisen R., Magan N. Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi // Curr. Genet. 2015. V. 61. P. 325–334. https://doi.org/10.1007/s00294-014-0455-9
- Middleton A. J., Cole D. S., MacDonald K.D. A hydroxamic acid from Aspergillus nidulans with antibiotic activity against Proteus species // J. Antibiotic. 1978. V. 31. P. 1110‒1115. https://doi.org/10.7164/antibiotics.31.1110
- Mishra B. B., Tiwari V. K. Natural products: an evolving role in future drug discovery // Eur. J. Med. Chem. 2011. V. 46. P. 4769‒4807.
- Montanares Oyarce M. M. Identificación de metabolitos de tipo sideróforos del hongo antártico Pseudogymnoascus verrucosus // Tesis (doctora en química). Universidad de Chile. 2024. https://repositorio.uchile.cl/handle/2250/202185
- Ogaki M. B., Coelho L. C., Vieira R., Neto A. A., Zani C. L., Alves T. M.A., Junior P. A.S., Murta S. M.F., Barbosa E. C., Oliveira J. G., Ceravolo I. P., Pereira P. O., Cota B. B., Viana R. O., Alves V. S., Rosa L. H. Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds // Extremophiles. 2020. V. 24. P. 227–238. https://doi.org/10.1007/s00792-019-01148-x
- Oide S., Turgeon B. G. Natural roles of nonribosomal peptide metabolites in fungi // Mycoscience. 2020. V. 61. № 3. P. 101–110. https://doi.org/10.1016/J.MYC.2020.03.001
- Palma D., Oliva V., Montanares M., Gil-Durán C., Travisany D., Chávez R., Vaca I. Expanding the toolbox for genetic manipulation in Pseudogymnoascus: RNAi-Mediated silencing and CRISPR/Cas9-Mediated disruption of a polyketide synthase gene involved in red pigment production in P. verrucosus // J. Fungi. 2024. V. 10. Art. 157. https://doi.org/10.3390/jof10020157
- Pillay L. C., Nekati L., Makhwitine P. J., Ndlovu S. I. Epigenetic activation of silent biosynthetic gene clusters in endophytic fungi using small molecular modifiers // Front. Microbiol. 2022. V. 13. Art. 815008. https://doi.org/10.3389/fmicb.2022.815008
- Romano S., Jackson S. A., Patry S., Dobson A. D.W. Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms // Mar. Drugs. 2018. V. 16. Art. 244.
- Rudolf J. D., Chang C. Y. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases // Nat. Prod. Rep. 2020. V. 37. P. 425‒463. https://doi.org/10.1039/c9np00051h
- Salimova D., Dalinova A., Dubovik V., Senderskiy I., Stepanycheva E., Tomilova O., Hu Q., Berestetskiy A. Entomotoxic аctivity of the extracts from the fungus, Alternaria tenuissima and its major metabolite, tenuazonic acid // J. Fungi. 2021. V. 7. Art. 774. https://doi.org/10.3390/jof7090774
- Satriawan H., Teoh T. C., Rizman-Idid M., Krishnan A., Bakar N. A., Alias S. A. Polar fungi Pseudogymnoascus: secondary metabolites and ecological significance // Chiang Mai J. Sci. 2024. V. 51. Art. e2024043. https://doi.org/10.12982/CMJS.2024.043
- Shankar A., Sharma K. K. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics // Appl. Microbiol. Biotechnol. 2022. V. 106. P. 3465–3488. https://doi.org/10.1007/s00253-022-11945-8
- Shi T., Yu Y. Y., Dai J. J., Zhang Y. T., Hu W. P., Zheng L., Shi D. Y. New polyketides from the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 // Mar. Drugs. 2021. V. 19. Art. 168. https://doi.org/10.3390/md19030168
- Sørensen J. L., Sondergaard T. E., Covarelli L., Fuertes P. R., Hansen F. T., Frandsen R. J.N., Wagma Saei, Lukassen M. B., Wimmer R., Nielsen K. F., Gardiner D. M., Giese H. Identification of the biosynthetic gene clusters for the lipopeptides fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum // J. Nat. Prod. 2014. V.77. Р. 2619‒2625.
- Stack D., Neville C., Doyle S. Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi // Microbiology (Reading). 2007. V. 153. P. 1297–1306. https://doi.org/10.1099/MIC.0.2006/006908-0
- Staunton J., Weissman K. J. Polyketide biosynthesis: a millennium review // Nat. Prod. Rep. 2001. V. 18. P. 380–416. https://doi.org/10.1039/A909079G
- Walsh J. P., DesRochers N., Renaud J. B., Seifert K. A., Yeung K. K., Sumarah M. W. Identification of N,N′,N″-triacetylfusarinine C as a key metabolite for root rot disease virulence in American ginseng // J. Ginseng Res. 2021. V. 45. P. 156‒162. https://doi.org/10.1016/j.jgr.2019.08.008
Supplementary files
