Intraspecific polymorphism of Saccharomyces paradoxus yeasts: Geographical populations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the Siberian Botanical Garden of Tomsk State University, 28 strains of Saccharomyces yeasts were isolated from the bark of Quercus robur and the soil beneath them. Based on the sequencing of the D1/D2 domain and the ITS1 region of rDNA, three strains were assigned to the species S. cerevisiae, and the rest to the species S. paradoxus. Using multigene phylogenetic analysis of nuclear genes (NEJ1, EST2, HDF1, HDF2), the genetic relationship of West Siberian strains of S. paradoxus with European, Far Eastern, North American and Hawaiian populations was studied. According to the results obtained, the West Siberian strains belong to the European population. Apparently, the border between the European and Far Eastern populations of S. paradoxus lies east of Tomsk Oblast.

About the authors

A. N. Borovkova

National Research Center “Kurchatov Institute”

Email: lena_naumova@yahoo.com
Moscow 123182, Russia

A. Y. Tuaeva

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: lena_naumova@yahoo.com
Moscow 123182, Russia

E. S. Naumova

National Research Center “Kurchatov Institute”

Email: lena_naumova@yahoo.com
Moscow 123182, Russia

References

  1. Бачинская А. А. История развития и культуры нового дрожжевого грибка – Saccharomyces paradoxus // Журн. микробиологии. 1914. Т. 1. № 3/5. С. 231–247.
  2. Глушакова А. М., Иванникова Ю. В., Наумова Е. С., Чернов И. Ю., Наумов Г. И. Массовое выделение и идентификация дрожжей Saccharomyces paradoxus из филлосферы растений // Микробиология. 2007. Т. 76. С. 236–242.
  3. Glushakova A. M., Ivannikova Y. V., Naumova E. S., Chernov I. Y., Naumov G. I. Massive isolation and identification of Saccharomyces paradoxus yeasts from plant phyllosphere // Microbiology (Moscow). 2007. V. 76. P. 205–210.
  4. Кудрявцев В. И. Систематика дрожжей. М.: Изд-во АН СССР, 1954. 427 с.
  5. Малеев В. П., Соколов С. Я. Род 6. Quercus – Дуб. Деревья и кустарники СССР: дикорастущие, культивируемые и перспективные для интродукции: в 6 Т. М.; Л.: АН СССР, 1951. 612 с.
  6. Надсон Г. А., Красильников Н. А. Об обратимости развития дрожжей Saccharomyces paradoxus Batschin. // Микробиол. журн. 1925. Т. 1. Вып. 2. С. 115–117.
  7. Наумов Г. И. Дивергентная популяция дрожжей Saccharomyces paradoxus на Гавайях: вид in statu nascendi // ДАН. 1999. Т. 364. № 2. С. 281–283.
  8. Naumov G. I. Divergent population of Saccharomyces paradoxus in the Hawaii island: an in statu nascendi yeast species // Dokl. Biol. Sci. 1999. V. 364. P. 51–53.
  9. Наумов Г. И. Эколого-биогеографические особенности дрожжей Saccharomyces paradoxus Batschinskaya и родственных видов: (I) ранние исследования // Микробиология. 2013. Т. 82. С. 387–394.
  10. Naumov G. I. Ecological and biogeographical features of Saccharomyces paradoxus Batschinskaya yeast and related species: I. the early studies // Microbiology (Moscow). 2013. V. 82. P. 397–403.
  11. Наумов Г. И., Кондратьева В. И., Наумова Т. И., Гудкова Н. К. Генетические основы классификации дрожжей Saccharomyces cerevisiae. Изучение выживаемости аскоспор гибридов // Журн. общ. биол. 1983. Т. 44. № 5. С. 648–660.
  12. Наумов Г. И., Наумова Е. С. Дикая популяция Saccharomyces cerevisiae, обнаруженная в Сибири // Микробиология. 1991. Т. 60. С. 537–540.
  13. Naumov G. I., Naumova E. S. A wild yeast population of Saccharomyces cerevisiae found in Siberia // Microbiology (Moscow). 1991. V. 60. P. 137–140.
  14. Наумов Г. И., Серпова Е. В., Наумова Е. С. Генетически изолированная популяция Saccharomyces cerevisiae в Малайзии // Микробиология. 2006. Т. 75. С. 245–249.
  15. Naumov G. I., Serpova E. V., Naumova E. S. A genetically isolated population of Saccharomyces cerevisiae in Malaysia // Microbiology (Moscow). 2006. V. 75. P. 201–205.
  16. Серпова Е. В., Кишковская С. Н., Мартыненко Н. Н., Наумова Е. С. Молекулярно-генетическая идентификация винных дрожжей Крыма // Биотехнология. 2011. № 6. С. 47–54.
  17. Serpova E. V., Kishkovskaya S. A., Martynenko N. N., Naumova E. S. Molecular genetic identification of wine yeasts of the Crimea // Biotechnology in Russia. 2011. № 6. P. 47–54.
  18. Чижов Б. Е., Глухарева М. В., Бобров Д. И. Стратегия интродукции дуба черешчатого в Западной Сибири с учетом его эктопического ареала // Вестник Алтайского ГАУ. 2013. №10 (108). С. 63–68.
  19. Юрков A. М. Первое выделение дрожжей Saccharomyces paradoxus в Западной Сибири // Микробиология. 2005. Т. 74. С. 533–536.
  20. Yurkov A. M. First isolation of the yeast Saccharomyces paradoxus in Western Siberia // Microbiology (Moscow). 2005. V. 74. P. 459–462.
  21. Bai F. Y., Han D. Y., Duan S. F., Wang Q. M. The ecology and evolution of the baker’s yeast Saccharomyces cerevisiae // Genes. 2022. V. 13. P. 230–251.
  22. Charron G., Leducq J. B., Landry C. R. Chromosomal variation segregates within incipient species and correlates with reproductive isolation // Mol. Ecol. 2014. V. 23. P. 4362–4372.
  23. Duan S. F., Han P. J., Wang Q. M., Liu W. Q., Shi J. Y., Li K., Zhang X. L., Bai F. Y. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia // Nat. Commun. 2018. V. 9. Art. 2690.
  24. Eberlein C., Hénault M., Fijarczyk A., Charron G., Bouvier M., Kohn L. M., Anderson J. B., Landry C. R. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation // Nat. Commun. 2019. V. 10. P. 923–937.
  25. Guillermond A. Sur le genre Zygosaccharomycodes créé récemment par M. Nishiwaki et quelques remarques sur la conjugaison des ascospores chez les levures // Recueil de Travaux Cryptogamigues. Paris: Muséum National d’Histoire Naturelle. 1931. P. 257–279.
  26. Han D. Y., Han P. J., Rumbold K., Koricha A. D., Duan S. F., Song L., Shi J. Y., Li K., Wang Q. M., Bai F. Y. Adaptive gene content and allele distribution variations in the wild and domesticated populations of Saccharomyces cerevisiae // Front. Microbiol. 2021. V. 12. Art. 631250.
  27. He P. Y., Shao X. Q., Duan S. F., Han D. Y., Li K., Shi J. Y., Zhang R. P., Han P. J., Wang Q. M., Bai F. Y. Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China // Yeast. 2022. V. 39. P. 69–82.
  28. Hyma K. E., Fay J. C. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards // Mol. Ecol. 2013. V. 22. P. 2917–2930.
  29. Koufopanou V., Hughes J., Bell G., Burt A. The spatial scale of genetic differentiation in a model organism: the wild yeast Saccharomyces paradoxus // Philos. Trans. R. Soc. B. 2006. V. 361. P. 1941–1946.
  30. Kuehne H. A., Murphy H. A., Francis C. A., Sniegowski P. D. Allopatric divergence, secondary contact and genetic isolation in wild yeast populations // Curr. Biol. 2007. V. 17. P. 407–411.
  31. Kurtzman C. P., Robnett C. J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences // Antonie van Leeuwenhoek. 1998. V. 73. P. 331–371.
  32. Leducq J. B., Charron G., Samani P., Dube A. K., Sylvester K., James B., Almeida P., Sampaio J. P., Hittinger C. T., Bell G., Landry C. R. Local climatic adaptation in a widespread microorganism // Proc. Royal Soc. B ‒ Biol. Sci. 2014. V. 281. Art. 20132472.
  33. Leducq J. B., Nielly-Thibault L., Charron G., Eberlein C., Verta J. P., Samani P., Sylvester K., Hittinger C. T., Bell G., Landry C. R. Speciation driven by hybridization and chromosomal plasticity in a wild yeast // Nature Microbiol. 2016. V. 1. Art. 15003.
  34. Liti G., Peruffo A., James S. A., Roberts I. N., Louis E. J. Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex // Yeast. 2005. V. 22. P. 177–192.
  35. Liti G., David B., Barton H., Louis E. J. Sequence diversity, reproductive isolation and species concepts in Saccharomyces // Genetics. 2006. V. 174. P. 839–850.
  36. Liti G., Carter D. M., Moses A. M., Warringer J., Parts L., James S. A., Davey R. P., Roberts I. N., Burt A., Koufopanou V., Tsai I. J., Bergman C. M., Bensasson D., O’Kelly M.J.T., van Oudenaarden A., Barton D. B.H., Bailes E., Nguyen Ba A. N., Jones M., Quail M. A., Goodhead I., Sims S., Smith F., Blomberg A., Durbin R., Louis E. J. Population genomics of domestic and wild yeasts // Nature. 2009. V. 458. P. 337–341.
  37. Lõoke M., Kristjuhan K., Kristjuhan A. Extraction of genomic DNA from yeasts for PCR based applications // Biotechniques. 2011. V. 50. P. 325–328.
  38. Nardi T., Carlot M., De Bortoli E., Corich V., Giacomini A. A rapid method for differentiating Saccharomyces sensu stricto strains from other yeast species in an enological environment // FEMS Microbiol. Lett. 2006. V. 264. P. 168–173.
  39. Naumov G. I., James S. A., Naumova E. S., Louis E. J., Roberts I. N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 1931–1942.
  40. Naumov G. I., Naumova E. S., Azbukina Z. M., Korhola M., Gaillardin C. Genetic and karyotypic identification of Saccharomyces yeasts from Far East Asia // Cryptogamie. Mycol. 1993. V. 14. № 2. P. 85–93.
  41. Naumov G. I., Naumova E. S., Lantto R. A., Louis E. J., Korhola M. Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: electrophoretic karyotypes // Yeast. 1992. V. 8. P. 599–612.
  42. Naumova E. S., Naumov G. I., Molina F. I. Genetic variation among European strains of Saccharomyces paradoxus: results from DNA fingerprinting // Syst. Appl. Microbiol. 2000. V. 23. P. 86–92.
  43. Naumov G. I., Naumova E. S., Sniegowski P. D. Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks // Can. J. Microbiol. 1998. V. 44. P. 1045–1050.
  44. O’Donnell S., Yue J. X., Saada O. A., Agier N., Caradec C., Cokelaer T., De Chiara M., Delmas S., Dutreux F., Fournier T., Friedrich A., Kornobis E., Li J., Miao Z., Tattini L., Schacherer J., Liti G., Fischer G. Telomere-to-telomere assemblies of 142 strains characterize the genome structural landscape in Saccharomyces cerevisiae // Nat. Genet. 2023. V. 55. P. 1390–1399.
  45. Peter J., De Chiara M., Friedrich A., Yue J. X., Pflieger D., Bergstrom A., Sigwalt A., Barre B., Freel K., Llored A., Cruaud C., Labadie K., Aury J. M., Istace B., Lebrigand K., Barbry P., Engelen S., Lemainque A., Wincker P., Liti G., Schacherer J. Genome evolution across 1,011 Saccharomyces cerevisiae isolates // Nature. 2018. V. 556. P. 339–344.
  46. Sniegowski P. D., Dombrowski P. G., Fingerman E. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics // FEMS Yeast Res. 2002. V. 1. P. 299–306.
  47. Strope P. K., Skelly D. A., Kozmin S. G., Mahadevan G., Stone E. A., Magwene P. M., Dietrich F. S., McCusker J.H. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen // Genome Res. 2015. V. 25. P. 762–774.
  48. Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11 // Mol. Biol. Evol. 2021. V. 38. P. 3022–3027.
  49. Wang Q. M., Liu W. Q., Liti G., Wang S. A., Bai F. Y. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity // Mol. Ecol. 2012. V. 21. P. 5404–5417.
  50. White T. J., Bruns T., Lee E., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics // PCR protocols: a guide to methods and applications. New York: Academic Press, 1990. P. 315–322.
  51. Xia W. J., Nielly-Thibault L., Charron G., Landry C. R., Kasimer D., Anderson J. B., Kohn L. M. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland // Mol. Ecol. 2017. V. 26. P. 995–1007.
  52. Zhang H., Skelton A., Gardner R. C., Goddard M. R. Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: evidence for migration from Europe and interspecies hybrids // FEMS Yeast Res. 2010. V. 10. P. 941–947.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».