Analysis of Biofilms Formed by Bacteria of the Genus Azospirillum in Soil
- Autores: Shirokov A.A.1, Mokeev D.I.1, Volokhina I.V.1, Yevstigneeva S.S.1,2, Borisov I.V.1, Filip’echeva Y.A.1, Matora L.Y.1, Muratova A.Y.1, Petrova L.P.1, Shelud’ko A.V.1
-
Afiliações:
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences
- Saratov State Medical University named after V.I. Razumovsky, Ministry of Health of the Russian Federation
- Edição: Volume 94, Nº 6 (2025)
- Páginas: 605–623
- Seção: EXPERIMENTAL ARTICLES
- URL: https://journal-vniispk.ru/0026-3656/article/view/358318
- DOI: https://doi.org/10.7868/S3034546425060102
- ID: 358318
Citar
Resumo
Palavras-chave
Sobre autores
A. Shirokov
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
D. Mokeev
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
I. Volokhina
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
S. Yevstigneeva
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences; Saratov State Medical University named after V.I. Razumovsky, Ministry of Health of the Russian FederationSaratov, Russia; Saratov, Russia
I. Borisov
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
Yu. Filip’echeva
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
L. Matora
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
A. Muratova
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of SciencesSaratov, Russia
L. Petrova
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences
Email: petrova_lp@mail.ru
Saratov, Russia
A. Shelud’ko
Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Research Center, Russian Academy of Sciences
Email: shel71@yandex.ru
Saratov, Russia
Bibliografia
- Баймиев Ан.Х., Ямиданов Р.С., Матниязов Р.Т., Благова Д.К., Баймиев Ал.Х., Чемерис А.В. Получение флуоресцентно меченых штаммов клубеньковых бактерий дикорастущих бобовых для их детекции in vivo и in vitro // Мол. биология. 2011. Т. 45. С. 984–991.
- Baymiev A.K., Yamidanov R.S., Matniyazov R.T., Blagova D.K., Baymiev Al.K., Chemeris A.V. Preparation of fluorescent labeled nodule bacteria strains of wild legumes for their detection in vivo and in vitro // Mol. Biol. 2011. V. 45. P. 904–910. https://doi.org/10.1134/S0026893311060033
- Евстигнеева С.С., Сигида Е.Н., Федоненко Ю.П., Коннова С.А., Игнатов В.В. Структурные особенности капсульных и О-полисахаридов бактерий Azospirillum brasilense Sp245 при изменении условий культивирования // Микробиология. 2016. Т. 85. С. 643‒651.
- Yevstigneyeva S.S., Sigida E.N., Fedonenko Y.P., Ignatov V.V., Konnova S.A. Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions // Microbiology (Moscow). 2016. V. 85. P. 664–671. https://doi.org/10.1134/S0026261716060096
- Качинский Н.А. Механический и микроагрегатный состав почвы, методы его изучения. М.: Изд-во Академии наук СССР, 1958. 192 с.
- Матора Л.Ю., Шварцбурд Б.И., Щеголев С.Ю. Иммунохимический анализ О-специфических полисахаридов почвенных азотфиксирующих бактерий Azospirillum brasilense // Микробиология. 1998. Т. 67. С. 815–820.
- Matora L.Yu., Shvartsburd B.I., Shchegolev S.Yu. Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacterium Azospirillum brasilense // Microbiology (Moscow). 1998. V. 67. P. 677–681.
- Мокеев Д.И., Волохина И.В., Телешева Е.М., Евстигнеева С.С., Гринев В.С., Пылаев Т.Е., Петрова Л.П., Шелудько А.В. Анализ устойчивости к осмотическому стрессу биопленок почвенных бактерий Azospirillum brasilense // Микробиология. 2022. Т. 91. С. 695–707. https://doi.org/10.31857/S0026365622800230
- Mokeev D.I., Volokhina I.V., Telesheva E.M., Evstigneeva S.S., Grinev V.S., Pylaev T.E., Petrova L.P., Shelud’ko A.V. Resistance of biofilms formed by the soil bacterium Azospirillum brasilense to osmotic stress // Microbiology (Moscow). 2022. V. 91. P. 682–692. https://doi.org/10.1134/S0026261722601567
- Шелудько А.В., Филипьечева Ю.А., Телешева Е.М., Буров А.М., Евстигнеева С.С., Бурыгин Г.Л., Петрова Л.П. Характеристика углеводсодержащих компонентов биопленок Azospirillum brasilense Sp245 // Микробиология. 2018. Т. 87. C. 483–494.
- Shelud’ko A.V., Filip’echeva Y.A., Telesheva E.M., Burov A.M., Evstigneeva S.S., Burygin G.L., Petrova L.P. Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms // Microbiology (Moscow). 2018. V. 87. P. 610–620. https://doi.org/10.1134/S0026261718050156
- Шелудько А.В., Мокеев Д.И., Евстигнеева С.С., Филипьечева Ю.А., Буров А.М., Петрова Л.П., Пономарева Е.Г., Кацы Е.И. Анализ ультраструктуры клеток в составе биопленок бактерий Azospirillum brasilense // Микробиология. 2020. Т. 89. С. 59–73. https://doi.org/10.1134/S0026365620010140
- Shelud’ko A.V., Mokeev D.I., Evstigneeva S.S., Filip’echeva Yu.A., Burov A.M., Petrova L.P., Ponomareva E.G., Katsy E.I. Cell ultrastructure in biofilms of Azospirillum brasilense // Microbiology. 2020. V. 89. P. 50–63. https://doi.org/10.1134/S0026261720010142
- Ashraf A., Bano A., Ali S.A. Characterization of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant // Plant Biol. (Stuttg.). 2019. V. 21. P. 762–769. https://doi.org/ 10.1111/plb.12972
- Cámara M., Green W., MacPhee C.E., Rakowska P.D., Raval R., Richardson M.C., Slater-Jefferies J., Steventon K., Webb J.S. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge // Biofilms Microbiomes. 2022. V. 8. P. 42. https://doi.org/ 10.1038/s41522-022-00306-y
- Cortés-Patiño S., Vargas C., Álvarez-Flórez F., Bonilla R., Estrada-Bonilla G. Potential of Herbaspirillum and Azospirillum consortium to promote growth of perennial ryegrass under water // Microorganisms. 2021. V. 9. Art. 91. https://doi.org/10.3390/microorganisms9010091
- Del Gallo M., Haegi A. Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum // Symbiosis. 1990. V. 9. P. 155–161.
- Döbereiner J., Day J.M. Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites // Symposium on Nitrogen Fixation / Eds. Newton W.E., Nijmans C.J. Pullman: Washington State University Press, 1976. P. 518–538.
- Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation // AMB Expr. 2018. V. 8. P. 73–85. https://doi.org/10.1186/s13568-018-0608-1
- Haldar S., Sengupta S. Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential // Open Microbiol. J. 2015. V. 9. P. 1–7. https://doi.org/10.2174/1874285801509010001
- Hemdan B.A., El-Taweel G.E., Goswami P., Pant D., Sevda S. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention // World J. Microbiol. Biotechnol. 2021. V. 37. Art. 36. https://doi.org/10.1007/s11274-021-03008-3
- Hendriksen N.B. Microbial biostimulants – the need for clarification in EU regulation // Trends Microbiol. 2022. V. 30. P. 311‒313. https://doi.org/10.1016/j.tim.2022.01.008
- Kaci Y., Heyraud A., Barakat M., Heulin T. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure // Res. Microbiol. 2005. V. 156. P. 522–531. https://doi.org/10.1016/j.resmic.2005.01.012
- Lipa P., Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses // Peer J. 2020. V. 8. Art. e8466. https://doi.org/10.7717/peerj.8466
- O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis // Mol. Microbiol. 1998. V. 28. P. 449–461.
- Philippot L., Chenu C., Kappler A., Rillig M., Fierer N. The interplay between microbial communities and soil properties // Nat. Rev. Microbiol. 2024. V. 22. P. 226–239. https://doi.org/10.1038/s41579-023-00980-5
- Ramírez-Mata A., López-Lara L.I., Xiqui-Vázquez M.L., Jijón-Moreno S., Romero-Osorio A., Baca B.E. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense // Res. Microbiol. 2016. V. 167. P. 190–201. https://doi.org/10.1016/j.resmic.2015.12.004
- Rostamian A., Moaveni P., Sadeghi-Shoae M., Mozafari H., Rajabzadeh F. Effective drought mitigation by rhizobacteria consortium in wheat field trials // Rhizosphere. 2023. V. 25. Art. 100653. https://doi.org/10.1016/j.rhisph.2022.100653
- Schloter M., Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies // Symbiosis. 1998. V. 25. P. 159–179.
- Shelud’ko A.V., Filip’echeva Y.A., Telesheva E.M., Yevstigneeva S.S., Petrova L.P., Katsy E.I. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions // World J. Microbiol. Biotechnol. 2019. V. 35. Art. 19. https://doi.org/10.1007/s11274-019-2594-0
- Shelud’ko A., Volokhina I., Mokeev D., Telesheva E., Yevstigneeva S., Burov A., Tugarova A., Shirokov A., Burigin G., Matora L., Petrova L. Chromosomal gene of hybrid multisensor histidine kinase is involved in motility regulation in the rhizobacterium Azospirillum baldaniorum Sp245 under mechanical and water stress // World J. Microbiol. Biotechnol. 2023. V. 39. Art. 336. https://doi.org/10.1007/s11274-023-03785-z
- Shelud’ko A., Volokhina I., Mokeev D., Telesheva E., Filip’Echeva Y., Burov A., Borisov I., Shirokov A., Matora L., Petrova L. Multilevel analysis of biofilms of Azospirillum bacteria colonizing wheat roots under different water supply conditions // Rhizosphere. 2025. V. 33. Art. 101029. https://doi.org/10.1016/j.rhisph.2025.101029
- Shime-Hattori A., Kobayashi S., Ikeda S., Asano R., Shime H., Shinano T. A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria // Appl. Microbiol. 2011. V. 111. P. 915–924. https://doi.org/10.1111/j.1365-2672.2011.05115.x
- Singh D., Thapa S., Singh J.P., Mahawar H., Saxena A.K., Singh S.K., Mahla H.R., Choudhary M., Parihar M., Choudhary K.B., Chakdar H. Prospecting the potential of plant growth-promoting microorganisms for mitigating drought stress in crop plants // Curr. Microbiol. 2024. V. 81. Art. 84. https://doi.org/10.1007/s00284-023-03606-4
- Skvortsov I.M., Ignatov V.V. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible interaction with plant roots // FEMS Microbiol. Lett. 1998. V. 165. P. 223‒229.
- Tarrand J.J., Krieg N.R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum braslense sp. nov. // Can. J. Microbiol. 1978. V. 24. P. 967–980.
- Viruega-Góngora V.I., Acatitla-Jácome I.S., Reyes-Carmona S.R., Baca B.E., Ramírez-Mata A. Spatio-temporal formation of biofilms and extracellular matrix analysis in Azospirillum brasilense // FEMS Microbiol. Lett. 2020. V. 367. Art. fnaa037. https://doi.org/10.1093/femsle/fnaa037
- Wang D., Xu A., Elmerich C., Ma L.Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions // ISME J. 2017. V. 11. P. 1602–1613. https://doi.org/ 10.1038/ismej.2017.30
- Zhang C., Gao N., Na X., Li K., Pu M., Sun H., Song Y., Peng T., Fei P., Li J., Cheng Z., He X., Liu M., Wang X., Kardol P., Bi Y. UV-B stress reshapes root-associated microbial communities and networks, driven by host plant resistance // Soil Biol. Biochem. 2025. V. 205. Art. 109767. https://doi.org/10.1016/j.soilbio.2025.109767
Arquivos suplementares

