Digestive Enzyme Activity and Gut Microbiota Community in African Catfish Clarias gariepinus
- Autores: Skvortsova E.G.1, Golovanova I.L.2, Filippov A.A.2, Kulivatskaya E.A.2, Filinskaya O.V.1, Bogdanova A.A.1
-
Afiliações:
- Yaroslavl State Agrarian University
- I.D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences
- Edição: Volume 94, Nº 6 (2025)
- Páginas: 624–636
- Seção: EXPERIMENTAL ARTICLES
- URL: https://journal-vniispk.ru/0026-3656/article/view/358319
- DOI: https://doi.org/10.7868/S3034546425060115
- ID: 358319
Citar
Resumo
To improve the growth efficiency and biomass accumulation rate of fish grown in aquaculture, it is necessary to have information on the activity of digestive enzymes and the composition of the intestinal microbiota involved in the digestion of the main components of the feed. In our work, we studied for the first time the activity of glycosidases and proteinases in the intestinal mucosa and chyme, as well as the composition of the intestinal microbiome of two size groups of African catfish Clarias gariepinus grown in tanks with a closed water supply system. Total amylolytic and total proteolytic activities were significantly higher in small fish compared to large ones, the activity of disaccharidases (sucrase and maltase) in the intestinal mucosa did not depend on the fish size. In both size-age groups of African catfish, five bacterial phyla dominated: Pseudomonadota, Bacillota, Actinomycetota, Fusobacteriota and Bacteroidota. In the group of small fish, Pseudomonadota accounted for almost half of the number of intestinal bacteria; in large catfish, the distribution of these bacterial phyla was more uniform. For the first time, a relationship was found between the activity of digestive enzymes and the relative abundance of bacteria of different taxa. The highest positive correlation in the chyme of small catfish was found for the total proteolytic activity with bacteria of the order Lactobacillales of the class Bacilli; in large catfish, with bacteria of the orders Actinomycetales and Bacillales, and the total amylolytic activity with bacteria of the order Fusobacteriales and Clostridiales (Eubacteriales). The data obtained can be used to adjust the composition of the microbiome and digestive enzymes in order to obtain greater biomass of catfish in aquaculture.
Palavras-chave
Sobre autores
E. Skvortsova
Yaroslavl State Agrarian University
Email: golovanova@ibiw.ru
Yaroslavl, Russia
I. Golovanova
I.D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences
Email: golovanova@ibiw.ru
Yaroslavl Region, Nekouzsky District, Borok Settlement, Russia
A. Filippov
I.D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences
Email: golovanova@ibiw.ru
Yaroslavl Region, Nekouzsky District, Borok Settlement, Russia
E. Kulivatskaya
I.D. Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences
Email: golovanova@ibiw.ru
Yaroslavl Region, Nekouzsky District, Borok Settlement, Russia
O. Filinskaya
Yaroslavl State Agrarian University
Autor responsável pela correspondência
Email: golovanova@ibiw.ru
Yaroslavl, Russia
A. Bogdanova
Yaroslavl State Agrarian University
Email: bogdanova.alе@gmail.com
Yaroslavl, Russia Russia
Bibliografia
- Зуева М.С., Мирошникова Е.П., Аринжанов А.Е., Килякова Ю.В. Влияние пробиотиков на элементный состав мышечной ткани карпа // Животноводство и кормопроизводство. 2023. Т. 106. № 2. С. 8–20.
- Кузьмина В.В. Пищеварительные процессы у рыб. Новые факты и гипотезы. Институт биологии внутренних вод им. И.Д. Папанина РАН. Ярославль: Филигрань, 2018. 300 с.
- Неваленный А.Н., Бедняков Д.А., Дзержинская И.С. Энзимология. Федеральное государственное бюджетное образовательное учреждение высшего образования “Астраханский государственный технический университет”. Астрахань, 2005. 102 с.
- Уголев А.М., Иезуитова Н.Н. Определение активности инвертазы и других дисахаридаз // Исследование пищеварительного аппарата у человека (обзор совр. методов). М.: Наука, 1969. С. 192–196.
- Уголев А.М., Кузьмина В.В. Пищеварительные процессы и адаптации у рыб. СПб.: Гидрометеоиздат, 1993. 238 с.
- Adewumi A.A., Idowu E.O., Obe B.W., Abesin O., Odeyemi O.M. Some physiological responses of the catfish, Clarias gariepinus (Burchell 1822) fed cassava (Manihot esculenta) peel and Leucaena leucocephala leaf meal // London J. Engin. Res. 2022. V. 22. № 5. Р. 1–9.
- Ali M.Z., Jauncey K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822) // Aquacult. Int. 2004.V. 12. P. 169–180.
- Alippi A.M. Evaluación de medios de cultivo para detectar la reacción de hidrólisis del almidón por patovares de Xanthomonas campestris // Revista Argentina de Microbiologia. 1991. V. 23. Р. 41–47.
- Anson M. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin // J. Gen. Physiol. 1938. V. 4. P. 79–83.
- Avila Santos A.P., Kabiru Nata’ala M., Kasmanas J.C., Coelho Kasmanas J., Bartholomäus A., Keller-Costa T., Jurburg S.D., Tal T. Camarinha-Silva A., Pedro Saraiva J., Ponce de Leon Ferreira de Carvalho A.C., Stadler P.F., Sipoli Sanches D., Rocha U. The AnimalAssociatedMetagenomeDB reveals a bias towards livestock and developed countries and blind spots in functional-potential studies of animal-associated microbiomes // Anim. Microbiome. 2023. V. 5. Art. 48. https://doi.org/10.1186/s42523-023-00267-3
- Bledsoe J.W., Waldbieser G.C., Swanson K.S., Peterson B.C., Small B.C. Comparison of channel catfish and blue catfish gut microbiota assemblages shows minimal effects of host genetics on microbial structure and inferred function // Front. Microbiol. 2018. V. 23. Art. 1073.
- Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 // Nature Biotechnol. 2019. V. 37. Р. 852–857. https://doi.org/10.1038/s41587-019-0209-9
- Bruijn I., Liu Y., Wiegertjes G.F., Raaijmakers J.M. Exploring fish microbial communities to mitigate emerging diseases in aquaculture // FEMS Microbiol. Ecol. 2018. V 94. Art. 161. https://doi.org/10.1093/femsec/fix161
- Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S. DADA2: High-resolution sample inference from Illumina amplicon data // Nature Methods. 2016. V. 13. Р. 581–583.
- Clements K.D., Angert E.R., Montgomery W.L., Choat J.H. Intestinal microbiota in fishes: what’s known and what’s not // Mol. Ecol. 2014. V. 23. Р. 1891–1898.
- Deng Z., Duarte M.E., Kim S.W. Efficacy of soy protein concentrate replacing animal protein supplements in mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs // Anim. Nutrit. 2023. V. 30. Р. 235–248.
- Florczyk K., Mazurkiewicz J., Przybylska K., Ulikowski D., Szczepkowski M., Andrzejewski W., Golski J. Growth performance, feed intake and morphology of juvenile European catfish, Silurus glanis (L.) fed diets containing different protein and lipid levels // Aquacult. Int. 2014. V. 22. Р. 205–214.
- Frolova T.V., Izvekov E.I., Izvekova G.I. First insights into the activity of major digestive enzymes in the intestine of the European catfish Silurus glanis and protective anti-enzymatic potential of its gut parasite Silurotaenia siluri // J. Fish Biol. 2023. V. 103. Р. 985–983.
- Gisbert E., Luz R.K., Fernández I., Pradhan P.K., Salhi M., Mozanzadeh M.T., Kumar A., Kotzamanis Y., Castro-Ruiz D., Bessonart M., Darias M.J. Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages // Rev. Aquacult. 2021. V. 14. Р. 73–105.
- Green P.N., Ardley J.K. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. Р. 2727–2748.
- Ikeda-Ohtsubo W., Brugman S., Warden C.H., Rebel J.M.J., Folkerts G., Pieterse C.M.J. How can we define “optimal microbiota?”: a comparative review of structure and functions of microbiota of animals, fish, and plants in agriculture // Front. Nutrit. 2018. V. 5. Art. 90. https://doi.org/10.3389/fnut.2018.00090
- Jiao F., Zhang L., Limbu S.M., Yin H., Xie Y., Yang Z., Shang Z., Kong L., Rong H. A comparison of digestive strategies for fishes with different feeding habits: digestive enzyme activities, intestinal morphology, and gut microbiota // Ecol. Evol. 2023. V. 13. Art. e10499. https://doi.org/10.1002/ece3.10499
- Jung M.Y., Lee Ch., Seo M.Ji., Roh S.W., Lee S.H. Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses // BMC Microbiol. 2020. V. 20. Art. 136. https://doi.org/10.1186/s12866-020-01820-9
- Kim P.S., Shin N.R., Lee J.B., Kim M.-S., Whon T.W., Hyun D.-W., Yun J.-H., Jung M.-J., Kim J.Y., Bae J.-W. Host habitat is the major determinant of the gut microbiome of fish // Microbiome. 2021. V. 9. Art. 166. https://doi.org/10.1186/s40168-021-01113-x
- Kormas K.A., Meziti A., Mente E., Frentzos A. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata) // Microbiol. Open. 2014. V. 3. Р. 718–728.
- Kwon S.W., Kim J.S., Park I.C., Yoon S.H., Park D.H., Lim C.K., Go S.J. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea // Int. J. Syst. Evol. Microbiol. 2003. V. 53. Р. 21–27.
- Liu H., Guo X., Gooneratne R., Lai R., Zeng C., Zhan F., Wang W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels // Sci. Rep. 2016. V. 6. Art. 24340. https://doi.org/10.1038/srep24340
- Nowosad J., Jasiński S., Arciuch-Rutkowska M., Abdel-Latif H.M.R., Wróbel M., Mikiewicz M., Zielonka Ł., Kotsyumbas I.Y., Muzyka V.P., Brezvyn O.M., Dietrich G., Kucharczyk D. Effects of bee pollen on growth performance, intestinal microbiota and histomorphometry in African catfish // Animals (Basel). 2022. V. 13. Art. 132.
- Oren A., Garrity G.M. Valid publication of the names of forty-two phyla of Prokaryotes // Int. J. Syst. Evol. Microbiol. 2021. V. 71. № 10. https://doi.org/10.1099/ijsem.0.005056
- Skvortsova E.G., Filinskaya O.V., Postrash I.Yu., Bushkareva A.S., Mostofina A.V. Biodiversity of gut microorganisms in aquacultured African catfish // E3S Web of Conferences. 2023. V. 463. Р. 01039.
- Sokal R.R., Rohlf F.J. Biometry. The principals and practice of statistics in biological research. NY.: W.H. Freeman and Co., 1995. 887 p.
- Solovyev M.M., Kashinskaya E.N., Gisbert E. A meta-analysis for assessing the contributions of trypsin and chymotrypsin as the two major endoproteases in protein hydrolysis in fish Intestine // Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2023. V. 278. Art. 111372. https://doi.org/10.1016/j.cbpa.2023.111372
- Tvrzová L., Schumann P., Spröer C., Sedláček I., Páčová Z., Šedo O., Zdráhal Z., Steffen M., Lang E. Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii // Int. J. Syst. Evol. Microbiol. 2006. V. 56. Р. 2657–2663.
- Wang J., Li Y., Jaramillo-Torres A., Einen O., Jakobsen J.V., Krogdahl Å., Kortner T.M. Exploring gut microbiota in adult Atlantic salmon (Salmo salar L.): associations with gut health and dietary prebiotics // Anim. Microbiome. 2023. V. 5. Art. 47. https://doi.org/10.1186/s42523-023-00269-1
- Wilczynski W., Radlinska M., Wysujack K., Czub M., Brzeziński T., Kowalczyk G., Bełdowski J., Nogueira P., Maszczyk P. Metagenomic analysis of the gastrointestinal microbiota of Gadusmorhua callarias L. originating from a chemical munition dump site // Toxics. 2022. V. 10. Art. 206. https://doi.org/10.3390/toxics10050206
- Xie M., Xie Y., Li Y., Zhou W., Zhang Z., Yang Y., Olsen R.E., Ringø E., Ran C., Zhou Z. Stabilized fermentation product of Cetobacterium somerae improves gut and liver health and antiviral immunity of zebrafish // Fish Shellfish Immunol. 2022. V. 120. Р. 56–66.
- You L., Ying C., Liu K., Zhang X., Lin D., Yin D., Zhang J., Xu P. Changes in the fecal microbiome of the Yangtze finless porpoise during a short-term therapeutic treatment // Open Life Sci. 2020. V. 15. Р. 296–310.
- Yúfera M., Moyano F.J., Martínez-Rodríguez G. The digestive function in developing fish larvae and fry. From molecular gene expression to enzymatic activity // Emerging Issues in Fish Larvae Research. 2018. Р. 51–86.
- Zakaria M.K., Kari Z.A., Van Doan H., Kabir M.A., Che Harun H., Mohamad Sukri S.A., Goh K.W., Wee W., Khoo M.I., Wei L.S. Fermented soybean meal (FSBM) in African catfish (Clarias gariepinus) diets: effects on growth performance, fish gut microbiota analysis, blood haematology, and liver morphology // Life. 2022. V. 12. Art. 1851. https://doi.org/10.3390/life12111851
Arquivos suplementares

