ФУНКЦИОНАЛЬНЫЕ ПЛЕНКИ ИЗ ХИТОЗАНА С УЛУЧШЕННЫМИ ФИЗИКО-МЕХАНИЧЕСКИМИ И АНТИБАКТЕРИАЛЬНЫМИ СВОЙСТВАМИ ПРОТИВ BACILLUS SUBTILIS И ESCHERICHIA COLI
- Авторы: Попырина Т.Н.1, Альхаир А.Я.2, Аксенова Н.А.3,4, Гончарук Г.П.1, Иванов П.Л.1, Кирш И.А.2, Акопова Т.А.1
-
Учреждения:
- Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
- Российский биотехнологический университет
- Институт регенеративной медицины Первого Московского государственного медицинского университета им. И.М. Сеченова
- Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН
- Выпуск: Том 94, № 6 (2025)
- Страницы: 653–663
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journal-vniispk.ru/0026-3656/article/view/358321
- DOI: https://doi.org/10.7868/S3034546425060134
- ID: 358321
Цитировать
Аннотация
Ключевые слова
Об авторах
Т. Н. Попырина
Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
Email: tanjapopyrina@yandex.ru
Москва, Россия
А. Я. Альхаир
Российский биотехнологический университетМосква, Россия
Н. А. Аксенова
Институт регенеративной медицины Первого Московского государственного медицинского университета им. И.М. Сеченова; Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАНМосква, Россия; Москва, Россия
Г. П. Гончарук
Институт синтетических полимерных материалов им. Н.С. Ениколопова РАНМосква, Россия
П. Л. Иванов
Институт синтетических полимерных материалов им. Н.С. Ениколопова РАНМосква, Россия
И. А. Кирш
Российский биотехнологический университетМосква, Россия
Т. А. Акопова
Институт синтетических полимерных материалов им. Н.С. Ениколопова РАНМосква, Россия
Список литературы
- Abbaszadegan A., Ghahramani Y., Gholami A., Hemmateenejad B., Dorostkar S., Nabavizadeh M., Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study // J. Nanomater. 2015. V. 16. Art. 53. https://doi.org/10.1155/2015/720654
- Akopova T.A., Popyrina T.N., Demina T.S. Mechanochemical transformations of polysaccharides: a systematic review // Int. J. Mol. Sci. 2022. V. 23. Art. 10458. https://doi.org/10.3390/ijms231810458
- Anitha A., Deepagan V.G., Divya Rani V.V., Menon D., Nair S.V., Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles // Carbohydr. Polym. 2011. V. 84. P. 1158–1164.
- Baklagina Y.G., Klechkovskaya V.V., Kononova S.V., Petrova V.A., Poshina D.N., Orekhov A.S., Skorik Y.A. Polymorphic modifications of chitosan // Crystallogr. Rep. 2018. V. 63. P. 303–313.
- Bolshakova O.I., Mikhailova E.A., Zherebyateva O.O., Miroshnichenko I.V., Sarantseva S.V. Can nanoparticles become an alternative to antibiotics // Nanobiotechnol. Rep. 2023. V. 18. P. 153–164.
- Cazón P., Vázquez M. Mechanical and barrier properties of chitosan combined with other components as food packaging film // Environ. Chem. Lett. 2020. V. 18. P. 257–267.
- Chen Y., Mohanraj V.J., Parkin J.E. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide // Lett. Peptide Sci. 2003. V. 10. P. 621–629.
- Chen Y.-M. Chung Y.-C., Wang Li.-W., Chen K.-T., Li S-Y. Antibacterial properties of chitosan in waterborne pathogen // J. Environ. Sci. Health. Part A. 2002. V. 37. P. 1379–1390.
- Debeaufort F., Voilley A. Edible films and coatings for food applications / Eds. M.E. Embuscado, K.C. Huber. Dordrecht‒Heidelberg‒London‒New York: Springer, 2009. https://doi.org/10.1007/978-0-387-92824-1
- Delair T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules // Eur. J. Pharm. Biopharm. 2011. V. 78. P. 10–18.
- Demchick P., Koch A.L. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis // J. Bacteriol. 1996. V. 178. P. 768–773.
- Díaz-Montes E., Yáñez-Fernández J., Castro-Muñoz R. Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus) // J. Food Process Preserv. 2021. V. 45. Art. e15489. http://dx.doi.org/10.1111/jfpp.15489
- Dolgopyatova N.V., Novikov V.Y., Kuchina Y.A., Konovalova I.N. Effect of deacetylation conditions on the physicochemical properties of chitosan from crustacean shells // ChemChemTech. 2022. V. 65. № 5. С. 77–86.
- Egorov A.R., Kirichuk A.A., Rubanik V.V., Rubanik V.V., Tskhovrebov A.G., Kritchenkov A.S. Chitosan and its derivatives: preparation and antibacterial properties // Materials (Basel). 2023. V. 16. Art. 6076. https://doi.org/10.3390/ma16186076
- Ezati P., Rhim J.W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications // Food Hydrocoll. 2020. V. 102. Art. 105629.
- Fernández-Marín R., Labidi J., Andrés M.Á., Fernandes S.C.M. Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil // Polym. Degrad. Stab. 2020. V. 179. Art. 109227. https://doi.org/10.1016/j.polymdegradstab.2020.109227
- Goy R.C., Morais S.T.B., Assis O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth // Revista Brasileira de Farmacognosia. 2016. V. 26. P. 122–127.
- Han J.W., Ruiz-Garcia L., Qian J.P., Yang X.T. Food packaging: a comprehensive review and future trends // Compr. Rev. Food Sci. Food Saf. 2018. V. 17. P. 860–877.
- Jung E.J., Youn D.K., Lee S.H., No H.K., Ha J.G., Prinyawiwatkul W. Antibacterial activity of chitosans with different degrees of deacetylation and viscosities // Int. J. Food Sci. Technol. 2010. V. 45. P. 676–682.
- Kadam D., Momin B., Palamthodi S., Lele S.S. Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles // Carbohydr. Polym. 2019. V. 211. С. 124–132.
- Madkhali O.A., Sivagurunathan M.S., Sultan M.H., Bukhary H.A., Ghazwani M., Alhakamy N.A., Meraya A.M., Alshahrani S., Alqahtani S.S., Bakkari M.A., Alam M.I., Elmobark M.E. Formulation and evaluation of injectable dextran sulfate sodium nanoparticles as a potent antibacterial agent // Sci. Rep. 2021. V. 11. Art. 9914. https://doi.org/10.1038/s41598-021-89330-0
- Mahdy Samar M., El-Kalyoubi M.H., Khalaf M.M., Abd El-Razik M.M. Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique // Ann. Agric. Sci. 2013. V. 58. P. 33–41.
- Mahmud M.Z.A., Mobarak M.H., Hossain N. Emerging trends in biomaterials for sustainable food packaging: a comprehensive review // Heliyon. 2024. V. 10. Art. e24122. https://doi.org/10.1016/j.heliyon.2024.e24122
- Moratti S.C., Cabral J.D. Antibacterial properties of chitosan // Chitosan Based Biomaterials. V. 1 / Eds. J.A. Jennings, J.D. Bumgardner. Woodhead Publishing, 2017. P. 31–44.
- Muralidharan S., Shanmugam K. Synthesis and characterization of naringenin-loaded chitosan-dextran sulfate nanocarrier // J. Pharm. Innov. 2021. V. 16. P. 269–278.
- No H.K., Meyers S.P., Prinyawiwatkul W., Xu Z. Applications of chitosan for improvement of quality and shelf life of foods: a review // J. Food Sci. 2007. V. 72. P. R87‒R100. https://doi.org/10.1111/j.1750-3841.2007.00383.x
- Popyrina T.N., Demina T.S., Akopova T.A. Polysaccharide-based films: from packaging materials to functional food // J. Food Sci. Technol. 2023. V. 60. P. 2736–2747.
- Priyadarshi R., Kumar B., Deeba F., Kulshreshtha A., Negi Y.S. Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material // Food Hydrocoll. 2018. V. 85. P. 158–166.
- Roy S., Min S.J., Biswas D., Rhim J.W. Pullulan/chitosan-based functional film incorporated with curcumin-integrated chitosan nanoparticles // Colloids Surf. A. Physicochem. Eng. Asp. 2023. V. 660. Art. 130898.
- Roy S., Rhim J.-W. Fabrication of chitosan-based functional nanocomposite films: effect of quercetin-loaded chitosan nanoparticles // Food Hydrocoll. 2021. V. 121. Art. 107065.
- Shah R., Eldridge D., Palombo E., Harding I. Optimization and stability assessment of solid lipid nanoparticles using particle size and zeta potential // J. Phys. Sci. 2014. V. 25. P. 59–75.
- Tuchilus C.G., Nichifor M., Mocanu G., Stanciu M.C. Antimicrobial activity of chemically modified dextran derivatives // Carbohydr. Polym. 2017. V. 161. P. 181–186.
- Upadhyay P., Ullah A. Enhancement of mechanical and barrier properties of chitosan-based bionanocomposites films reinforced with eggshell-derived hydroxyapatite nanoparticles // Int. J. Biol. Macromol. 2024. V. 261. Art. 129764.
- Wang W., Xue C., Mao X. Chitosan: structural modification, biological activity and application // Int. J. Biol. Macromol. 2020. V. 164. P. 4532–4546.
- Yao Q.B., Huang F., Lu Y.H., Huang J.M., Ali M., Jia X.Z., Zeng X.A., Huang Y.Y. Polysaccharide-based food packaging and intelligent packaging applications: a comprehensive review // Trends Food Sci. Technol. 2024. V. 147. Art. 104390.
- Zhang K., Chen Q., Xiao J., You L., Zhu S., Li C., Fu X. Physicochemical and functional properties of chitosan-based edible film incorporated with Sargassum pallidum polysaccharide nanoparticles // Food Hydrocoll. 2023. V. 138. Art. 108476.
- Zhu F. Polysaccharide based films and coatings for food packaging: effect of added polyphenols // Food Chem. 2021. V. 359. Art. 129871.
Дополнительные файлы


