Peculiarities of the Mechanism of Interactions of Catalytic Antibodies with Organophosphorus Substrates


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Catalytic antibodies are a promising model for creating highly specific biocatalysts with predetermined activity. However, in order to realize the directed change or improve their properties, it is necessary to understand the basics of catalysis and the specificity of interactions with substrates. In the present work, a structural and functional study of the Fab fragment of antibody A5 and a comparative analysis of its properties with antibody A17 have been carried out. These antibodies were previously selected for their ability to interact with organophosphorus compounds via covalent catalysis. It has been established that antibody A5 has exceptional specificity for phosphonate X with bimolecular reaction rate constants of 510 ± 20 and 390 ± 20 min–1M–1 for kappa and lambda variants, respectively. 3D-Modeling of antibody A5 structure made it possible to establish that the reaction residue L-Y33 is located on the surface of the active site, in contrast to the A17 antibody, in which the reaction residue L-Y37 is located at the bottom of a deep hydrophobic pocket. To investigate a detailed mechanism of the reaction, A5 antibody mutants with replacements L-R51W and H-F100W were created, which made it possible to perform stopped-flow kinetics. Tryptophan mutants were obtained as Fab fragments in the expression system of the methylotrophic yeast species Pichia pastoris. It has been established that the effectiveness of their interaction with phosphonate X is comparable to the wild-type antibody. Using the data of the stopped-flow kinetics method, significant conformational changes were established in the phosphonate modification process. The reaction was found to proceed using the induced-fit mechanism; the kinetic parameters of the elementary stages of the process have been calculated. The results present the prospects for the further improvement of antibody-based biocatalysts.

About the authors

I. I. Vorobiev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Institute of Bioengineering, Research Center of Biotechnology

Author for correspondence.
Email: ptichman@gmail.com
Russian Federation, Moscow, 117997; Moscow, 119071

Yu. A. Mokrushina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997

S. O. Pipiya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997

A. V. Stepanova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997

O. G. Shamborant

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997

V. D. Knorre

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997

I. V. Smirnov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Institute of Fundamental Medicine and Biology

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997; Republic of Tatarstan, 420055

A. G. Gabibov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Institute of Fundamental Medicine and Biology

Email: ptichman@gmail.com
Russian Federation, Moscow, 117997; Republic of Tatarstan, 420055

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Inc.