Simultaneous Incorporation of Different Cy5-Labeled Deoxypyrimidine Nucleotides into the Synthesized DNA Chain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In PCR with Taq polymerase on the Staphylococcus aureus genomic DNA template, the substrate properties of eight fluorescently labeled deoxyuridine and deoxycytidine triphosphates (Cy5-dUTP and Cy5-dCTP), which are dU-dC pairs with similar cyanine substituents, was compared during simultaneous introduction of the such pairs in PCR. The different Cy5-dUTP and Cy5-dCTP pairs differed from each other in that each of them had substituents with different linker lengths between the nitrogenous base and the fluorophore, as well as the linker lengths between the quaternary ammonium group and the second heterocycle of the Cy5 fluorophore. The amplification efficiency, as well as the yield of the product, and the density of label incorporation were determined. It was found that with the simultaneous introduction of Cy5-modified dU and dC into the reaction at equimolar concentrations, the inhibitory effect was not directly proportional to the concentration, in contrast to that with separate (individual) introduction of fluorescently labeled dNTPs. This allows one to use the simultaneous introduction of Cy5-modified dU and dC into PCR to increase sensitivity in methods based on the detection of a fluorescent signal, for example, in DNA-microarray technology.

About the authors

P. M Monakova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. E Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

S. A Surzhikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

I. V Grechishnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

S. A Lapa

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: lapa@biochip.ru
Moscow, Russia

A. V Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

References

  1. Lee M.A., Siddle A.L., Page R.H. (2002) ResonSense®: simple linear fluorescent probes for quantitative homogenous rapid polymerase chain reaction. *Analytica Chimica Acta*. **457**, 61–70.
  2. Yu H., Chao J., Patek D., Mujumdar R., Mujumdar S., Waggoner A.S. (1994) Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. *Nucleic Acids Res*. **22**, 3226–3232.
  3. Abdirassilova A.A., Abdel Z.Z.H., Kurmanov B.K., Kassenova A.K., Rysbekova A.K., Yessimesti D.T., Abdeliyev B.Z., Meka Mechenko T.V., Dalibayev Z.H.S., Beginnbayeva E.Z.H. (2020) Development of a real-time PCR using fluorescent hybridization probes. *J. Res. Med. Dent. Sci*. **8**, 26–36.
  4. Navarro E., Serrano-Heras G., Castano M.J., Solera J. (2015) Real-time PCR detection chemistry. *Clin. Chim. Acta*. **439**, 231–250.
  5. Proudnikov D., Yuferov V., Zhou Y., LaForge K.S., Ho A., Kreek M.J. (2003) Optimizing primer-probe design for fluorescent PCR. *J. Neurosci. Methods*. **123**, 31–45.
  6. Lehnert M., Kipf E., Schlenker F., Borst N., Zengerle R., von Stetten F. (2018) Fluorescence signal-to-noise optimisation for real-time PCR using universal reporter oligonucleotides. *Analytical Methods*. **10**, 3444–3454.
  7. Spitsyn M.A., Kuznetsova V.E., Shershov V.E., Emelyanova M.A., Guseinov T.O., Lapa S.A., Nasedkina T.V., Zasedatelev A.S., Chudinov A.V. (2017) Synthetic route to novel zwitterionic pentamethine indocyanine fluorophores with various substitutions. *Dyes Pigments*. **147**, 199–210.
  8. Шершов В.Е., Лапа С.А., Левашова А.И., Шишкин И.Ю., Штылев Г.Ф., Щекалова Е.Ю., Василисков В.А., Заседателев А.С., Кузнецова В.Е., Чудинов А.В. (2023) Синтез флуоресцентно-меченых нуклеотидов для маркирования продуктов изотермической амплификации. *Биоорг. химия*. **49**, 649–656.
  9. Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. *Neurosci. Lett*. **339**, 62–66.
  10. Peirson S.N., Butler J.N., Foster R.G. (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. *Nucleic Acids Res*. **31**, e73.
  11. Sambrook J., Russell D.W. (2001) Preparing denatured double-stranded DNA templates for sequencing by didcoxy-mediated chain termination. In: *Molecular Cloning: A Laboratory Manual*, 3rd ed., vol. 2, Ch. 12. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, pp. 12–26–12–30.
  12. Monakova P.M., Shershov V.E., Kuznetsova V.E., Chudinov A.V., Lapa S.A. (2025) Substrate behavior of dissimilar Cy5-deoxypyrimidine nucleotides in PCR with DNA templates of different GC compositions. *Mol. Biol*. **59**, 116–122. https://doi.org/10.1134/S0026893324700754
  13. Shershov V.E., Lapa S.A., Kuznetsova V.E., Spitsyn M.A., Guseinov T.O., Polyakov S.A., Stomahin A.A., Zasedatelev A.S., Chudinov A.V. (2017) Comparative study of novel fluorescent cyanine nucleotides: hybridization analysis of labeled PCR products using a biochip. *J. Fluoresc*. **27** (6), 2001–2016.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).