Complete rational arithmetic sums
- Authors: Chubarikov V.N.1
-
Affiliations:
- Faculty of Mechanics and Mathematics
- Issue: Vol 71, No 1 (2016)
- Pages: 43-44
- Section: Brief Communications
- URL: https://journal-vniispk.ru/0027-1322/article/view/164326
- DOI: https://doi.org/10.3103/S0027132216010095
- ID: 164326
Cite item
Abstract
Let {itq} > 1 be an integer number, \(f\left( x \right) = {a_n}{x^n} + \ldots + {a_1}x + {a_0}\) be a polynomial with integer coefficients, and ({ita}{in{itn}}, . . . ,{ita}{in1},{itq}) = 1. The following estimate is valid: \(\left| {S\left( {\frac{{f\left( x \right)}}{q}} \right)} \right| = \left| {\sum\limits_{x = 1}^q \rho \left( {\frac{{f\left( x \right)}}{q}} \right)} \right| \ll {q^{1 - 1/n}}\), where \(\rho \left( t \right) = 0,5 - \left\{ t \right\}\).
Keywords
About the authors
V. N. Chubarikov
Faculty of Mechanics and Mathematics
Author for correspondence.
Email: chubarik1@mech.math.msu.su
Russian Federation, Leninskie Gory, Moscow, 119991
Supplementary files
