Nonaffine differential-algebraic curves do not exist
- Authors: Gerasimova O.V.1, Razmyslov Y.P.1
-
Affiliations:
- Moscow State University
- Issue: Vol 72, No 3 (2017)
- Pages: 89-93
- Section: Article
- URL: https://journal-vniispk.ru/0027-1322/article/view/164507
- DOI: https://doi.org/10.3103/S0027132217030019
- ID: 164507
Cite item
Abstract
The paper outlines why the spectrum of maximal ideals SpecℂA of a countable-dimensional differential ℂ-algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any ℂ-homomorphism ψM: A → ℂ (M ∈ SpecℂA) and any a ∈ A the Taylor series \(\widetilde {{\psi _M}}{\left( a \right)^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} \frac{{{z^m}}}{{m!}}\) has nonzero radius of convergence depending on the element a ∈ A.
About the authors
O. V. Gerasimova
Moscow State University
Author for correspondence.
Email: ynona_olga@rambler.ru
Russian Federation, Moscow, 119991
Yu. P. Razmyslov
Moscow State University
Email: ynona_olga@rambler.ru
Russian Federation, Moscow, 119991
Supplementary files
