tert-Butyl Ethers of Renewable Diols as Oxygenate Additives to Automobile Gasolines. Part II: Ethers of Ethylene Glycol and 2,3-Butanediol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results obtained in the second part of the study of vicinal (tert-butoxy)alkanols as additives to automobile gasolines are presented. Mono-tert-butyl ethers of ethylene glycol (ETBE) and 2,3-butanediol (BTBE) were prepared by direct acid-catalyzed alkylation of the corresponding diols with tert-butanol. The substances obtained were characterized by main physical properties (density, viscosity, boiling point, crystallization point, specific heat of combustion) and were studied as additives to automobile gasolines. The effect of ether additives on the main physicochemical properties of gasolines (fractional composition, saturated vapor pressure, concentration of actual resins, knock resistance), including ethanol-containing gasolines, was studied. The mean research/motor blending octane numbers for ETBE and BTBE were 130/103 and 115/97, respectively. Inclusion of ETBE/BTBE into the formulations of ethanol-containing gasolines allowed the cloud point to be considerably reduced without unambiguous synergistic effect on the knock resistance.

About the authors

V. O. Samoylov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

T. I. Stolonogova

Gubkin Russian State University of Oil and Gas

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

D. N. Ramazanov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

E. V. Tyurina

Gubkin Russian State University of Oil and Gas

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

M. U. Sultanova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

V. A. Lavrent'ev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: lavrentev@ips.ac.ru
119991, Moscow, Russia

S. S. Krasnoshtanova

Gubkin Russian State University of Oil and Gas

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

E. A. Chernysheva

Gubkin Russian State University of Oil and Gas

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

V. M. Kapustin

Gubkin Russian State University of Oil and Gas

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. Самойлов В.О., Столоногова Т.И., Рамазанов Д.Н., Тюрина Е.В., Лаврентьев В.А., Порукова Ю.И., Чернышева Е.А., Капустин В.М. трет-Бутиловые эфиры возобновляемых диолов как оксигенатные добавки к автомобильным бензинам. Часть I: эфиры глицерина и пропиленгликоля // Нефтехимия. 2023. Т. 63. № 2. С. 220-230. https://doi.org/10.31857/S0028242123020065
  2. Samoilov V.O., Stolonogova T.I., Ramazanov D.N., Tyurina E. V, Lavrent'ev V.A., Porukova Y.I., Chernysheva E.A., Kapustin V.M. tert-Butyl ethers of renewable diols as oxygenated additives for motor gasoline. Part I: Glycerol and propylene glycol ethers // Petrol. Chemistry. 2023. V. 63. № 4. P. 428-436. https://doi.org/10.1134/S0965544123010061.
  3. Soares B.P., Abranches D.O., Sintra T.E., Leal-Duaso A., García J.I., Pires E., Shimizu S., Pinho S.P., Coutinho A.P. Glycerol ethers as hydrotropes and their use to enhance the solubility of phenolic acids in water // ACS Sustain Chem. Eng. 2020. V. 8. N 14. P. 5742-5749. https://doi.org/10.1021/acssuschemeng.0c01032
  4. Moity L., Shi Y., Molinier V., Dayoub W., Lemaire M., Aubry J.M. Hydrotropic properties of alkyl and aryl glycerol monoethers // J. Phys. Chem. B. 2013. V. 117. N 31. P. 9262-9272. https://doi.org/10.1021/jp403347u.
  5. Nadirov, N.K. and Slutskin, R.L. Kataliticheskoe gidrirovanie i gidrogenoliz uglevodov, Moscow: Khimiya, 1976, 193 p.
  6. Tan Z., Shi L., Zan Y., Miao G., Li S., Kong L., Li S., Sun Yu. Crucial role of support in glucose selective conversion into 1,2-propanediol and ethylene glycol over Ni-based catalysts: A combined experimental and computational study // Appl. Catal. A. Gen. 2018. V. 560. P. 28-36. https://doi.org/10.1016/j.apcata.2018.04.026
  7. Zeng A.-P., Sabra W. Microbial production of diols as platform chemicals: Recent progresses // Curr. Opin. Biotechnol. 2011. V. 22. N 6. P. 749-757. https://doi.org/10.1016/j.copbio.2011.05.005
  8. Ji X.-J., Huang H., Ouyang P.-K. Microbial 2,3butanediol production: A state-of-the-art review // Biotechnol Adv. 2011. V. 29. N 3. P. 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
  9. Xue C., Zhao J., Lu C., Yang S.-T., Bai F., Tang I.-C. High-titer n -butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping // Biotechnol. Bioeng. 2012. V. 109. N 11. P. 2746-2756. https://doi.org/10.1002/bit.24563
  10. Jang Y.-S., Malaviya A., Lee S.Y. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19 // Biotechnol. Bioeng. 2013. V. 110. N 6. P. 1646-1653. https://doi.org/10.1002/bit.24843
  11. Mohd Azhar S.H., Abdulla R., Jambo S.A., Marbawi H., Gansau J.A., Mohd Faik A.A., Rodrigues K.F. Yeasts in sustainable bioethanol production: A review // Biochem. Biophys. Reports. 2017. V. 10. P. 52-61. https://doi.org/10.1016/j.bbrep.2017.03.003
  12. Núñez Caraballo A., Iliná A., Ramos González R., Aguilar C.N., Michelena Álvarez G., Flores Gallegos A.C., Sandoval-Cortes J., Aguilar-Gonzalez M.A., SotoCruz N.O. Garcia Garcia J.D., Martinez-Hernandez J.L. Sustainable ethanol production from sugarcane molasses by saccharomyces cerevisiae immobilized on chitosan-coated manganese ferrite // Front Sustain Food Syst. 2021. V. 5. https://doi.org/10.3389/fsufs.2021.683170
  13. Harvey B.G., Merriman W.W., Quintana R.L. Renewable gasoline, solvents, and fuel additives from 2,3-butanediol // ChemSusChem. 2016. V. 9. № 14. P. 1814-1819. https://doi.org/10.1002/cssc.201600225
  14. Samoilov V.O., Borisov R.S., Stolonogova T.I., Zarezin D.P., Maximov A.L., Bermeshev M.V., Chernysheva E.A., Kapustin V.M. Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl(idene) substituents // Fuel. 2020. V. 280. P. 118585. https://doi.org/10.1016/j.fuel.2020.118585
  15. Samoilov V., Ni D., Goncharova A., Zarezin D., Kniazeva M., Ladesov A., Kosyakov D., Bermeshev M., Maximov A. Bio-based solvents and gasoline components from renewable 2,3-butanediol and 1,2-propanediol: Synthesis and characterization // Molecules. 2020. V. 25. № 7. P. 1723. https://doi.org/10.3390/molecules25071723
  16. Roze M., Kampars V., Teivena K., Kampare R., Liepins E. Catalytic etherification of glycerol with alcohols // Mater Sci. Appl. Chem. 2013. V. 28. № 28. P. 67. https://doi.org/10.7250/msac.2013.011
  17. González M.D., Cesteros Y., Salagre P. Establishing the role of Brønsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites // Appl. Catal. A. Gen. 2013. V. 450. P. 178-188. https://doi.org/10.1016/j.apcata.2012.10.028
  18. Ozbay N., Oktar N., Dogu G., Dogu T. Activity comparison of different solid acid catalysts in etherification of glycerol with tert-butyl alcohol in flow and batch reactors // Top. Catal. 2013. V. 56. № 18-20. P. 1790-1803. https://doi.org/10.1007/s11244-013-0116-0
  19. Ershov M.A., Potanin D.A., Tarazanov S.V., Abdellatief T.M.M., Kapustin V.M. Blending characteristics of isooctene, MTBE, and TAME as gasoline components // Energy & Fuels. 2020. V. 34. № 3. P. 2816-2823. https://doi.org/10.1021/acs.energyfuels.9b03914
  20. Abdellatief T.M.M., Ershov M.A., Kapustin V.M., Ali Abdelkareem M., Kamil M., Olabi A.G. Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review // Fuel. 2021. V. 291. P. 120112. https://doi.org/10.1016/j.fuel.2020.120112
  21. Abdellatief T.M.M., Ershov M.A., Kapustin V.M., Chernysheva E.A., Savelenko V.D., Makhmudova A.E., Potanin D.A., Salameh T., Abdelkareem M.A., Olabi A.G. Innovative conceptional approach to quantify the potential benefits of gasoline-methanol blends and their conceptualization on fuzzy modeling // Int. J. Hydrogen Energy. 2022. V. 47. № 82. P. 35096-35111. https://doi.org/10.1016/j.ijhydene.2022.08.076
  22. Mužíková Z., Pospíšil M., Šebor G. Volatility and phase stability of petrol blends with ethanol // Fuel. 2009. V. 88. № 8. P. 1351-1356. https://doi.org/10.1016/j.fuel.2009.02.003
  23. Agarwal A.K., Karare H., Dhar A. Combustion, performance, emissions and particulate characterization of a methanol-gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine // Fuel Process Technol. 2014. V. 121. P. 16-24. https://doi.org/10.1016/j.fuproc.2013.12.014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».