Redistribution of Energy during Horizontal Stretching of Ocean Vortices by Barotropic Currents

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper proposes a study of the transformation of the physical properties of mesoscale vortices during their strong elongation by horizontal barotropic currents. It is shown that when the core is pulled out, the kinetic and available potential energies of the vortex individually, as well as their sum (the total mechanical energy of the vortex) decreases, and the vortex itself degrades in all physical parameters. The decrease in the energy of the ensemble of vortices when they are pulled out by the background flow is interpreted as a manifestation of the reverse energy cascade property or, in older terminology, the phenomenon of negative viscosity.

Sobre autores

V. Zhmur

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zhmur-vladimir@mail.ru
Russia, Moscow

D. Harutyunyan

Moscow Institute of Physics and Technology (State University)

Email: zhmur-vladimir@mail.ru
Russia, Moscow

Bibliografia

  1. Голицын Г.С. Вероятностные структуры макромира: землетрясения, ураганы, наводнения. М.: Физматлит, 2021. 176 с.
  2. Жмур В.В. Мезомасштабные вихри океана. М.: ГЕОС, 2011. 384 с.
  3. Жмур В.В., Новоселова Е.В., Белоненко Т.В. Потенциальная завихренность в океане: подходы Эртеля и Россби с оценками для Лофотенского вихря // Известия РАН. Физика атмосферы и океана. 2021. Т. 57. № 6. С. 721–732.
  4. Жмур В.В., Панкратов К.К. Динамика эллипсоидального приповерхностного вихря в неоднородном потоке // Океанология. 1989. Т. 29. № 2. С. 205–211.
  5. Жмур В.В., Панкратов К.К. Дальнее взаимодействие ансамбля квазигеострофичнских эллипсоидальных вихрей. Гамильтонова формулировка // Изв. АН СССР. Физика атмосферы и океана. 1990. Т. 26. № 9. С. 972–981.
  6. Жмур В.В., Щепеткин А.Ф. Эволюция эллипсоидального вихря в стратифицированном океане в приближении f-плоскости // Изв. АН СССР. Физика атмосферы и океана. 1991. Т. 27. № 5. С. 492–503.
  7. Зацепин А.Г., Баранов В.И., Кондрашов А.А. и др. Субмезомасштабные вихри на кавказском шельфе Черного моря и порождающие их механизмы // Океанология. 2011. Т. 51. № 4. С. 592–605.
  8. Ларичев В.Д., Резник Г.М. Сильнонелинейный двумерный солитон волн Россби // Океанология. 1976. Т. 16. № 6. С. 961–967.
  9. Bower A.S., Hendry R.M., Amrhein D.E., Lilly J.M. Direct observations of formation and propagation of subpolar eddies into the Subtropical North Atlantic // Deep-Sea Research II. 2013. V. 85. P. 15–41. https://doi.org/10.1016/j.dsr2.2012.07.029
  10. Brannigan L. Intense submesoscale upwelling in anticyclonic eddies // Geophys. Res. Lett. 2016. V. 43. № 7. P. 3360–3369. https://doi.org/10.1002/2016GLO67926
  11. Brannigan L., Marshall D.P., Naveira-Garabato A. et al. Submesoscale instabilities in mesoscale eddies // Journal of Physical Oceanography. 2017. V. 47. № 12. P. 3061–3085. https://doi.org/10.1175/JPO-D-16-0178.1
  12. Capet X., McWilliams J.C., Molemaker M.J., Shchepetkin A.F. Mesoscale to submesoscale. Transition in the California current system. Part I: flow structure, eddy flux, and observational tests // Journal of Physical Oceanography. 2008. V. 38. № 1. P. 29–43. https://doi.org/10.1175/2007JPO3671.1
  13. Capet X., McWilliams J.C., Molemaker M.J., Shchepetkin A.F. Mesoscale to submesoscale transition in the California current system. Part II: frontal processes // Journal of Physical Oceanography. 2008. V. 38. № 1. P. 44–46. https://doi.org/10.1175/2007JPO3672.1
  14. Capet X., McWilliams J.C., Molemaker M.J., Shchepetkin A.F. Mesoscale to submesoscale transition in the California current system. Part III: energy and balance flux // Journal of Physical Oceanography. 2008. V. 38. № 10. P. 2256–2269. https://doi.org/10.1175/2008JPO3810.1
  15. de Marez C., Carton X., Corréard S. et al. Observations of a deep submesoscale cyclonic vortex in the Arabian Sea // Geophys. Res. Lett. 2020. V. 47. № 13, e2020GL087881 (10 p.). https://doi.org/10.1029/2020GL087881
  16. Ertel H. Ein neuer hydrodynamischer Erhaltungssatz. Die Naturwissenschaften. 1942. V. 36. P. 543–544.
  17. Ertel H. Über hydrodynamischer Wirbelsätze. Physikalische Zeitschrift Leipzig. 1942. V. 43. P. 526–529.
  18. Ertel H. Ein neuer hydrodynamischer Wirbelsatz. Meteorologische Zeitschrift. 1942. V. 59. P. 277–281.
  19. Gula J., Blacic T.M., Todd R.E. Submesoscale coherent vortices in the Gulf Stream // Geophys. Res. Lett. 2019. V. 46. № 5. P. 2704–2714. https://doi.org/10.1029/2019GL081919
  20. Klein P., Lapeyre G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence // Annu. Rev. Mar. Sci. 2009. V. 1. № 1. P. 351–357. https://doi.org/10.1146/annurev.marine.010908.163704
  21. Koshel K.V., Ryzhov E.A., Zhmur V.V. Ellipsoidal vortex in a nonuniform flow: dynamics and chaotic advections // J. Mar. Res. 2011. V. 69. № 2–3. P. 435–461.
  22. Koshel K.V., Ryzhov E.A., Zhmur V.V. Diffusion – effected passive scalar transport in an ellipsoidal vortex in a shear flow // Nonlinear Processes in Geophysics. 2013. V. 20. P. 437–444. https://doi.org/10.5194/npg-20-437-2013
  23. Koshel K.V., Ryzhov E.A., Zhmur V.V. Effect of the vertical component of diffusion on passive scalar transport in an isolated vortex model // Phys. Rev. 2015. V. 92. № 5. 053021. https://doi.org/10.1103/PhysRevE.92.053021
  24. Mahadevan A.,Tandon A. An analysis of mechanisms for submesocale vertical motion at fronts // Ocean Modelling. 2006. V. 14. № 3. P. 241–256. https://doi.org/10.1016/j.ocemod.2006.05.006
  25. McKiver W.J. Balanced ellipsoidal vortex at finite Rossby number // Geophysical and Astrophysical Fluid Dynamics. 2020. V. 114. № 4-5. P. 1–26. https://doi.org/10.1080/03091929.2020.1755671
  26. Meacham S.P. Quasigeostrophic, ellipsoidal vortices in a stratified fluid // Dynamics of Atmospheres and Oceans. 1992. V. 16. № 3–4, P. 189–223.
  27. Meacham S.P., Pankratov K.K., Shchepetkin A.F., Zhmur V.V. The interaction of ellipsoidal vortices with background shear flows in a stratified fluid // Dynamics of Atmospheres and Oceans. 1994. V. 21. № 2–3. P. 167–212. https://doi.org/10.1016/0377-0265(94)90008-6
  28. Pankratov K.K., Zhmur V.V. A dynamics of desingularized quasigeostrophic vortices // Phys. Fluids A. 1991. V. 3. P. 1464.
  29. Roullet G., Klein P. Cyclone-anticyclone asymmetry in geophysical turbulence // Phys. Rev. 2010. V. 104. № 21. 218501. https://doi.org/10.1103/PhysRevLett.104.218501
  30. Zhmur V.V., Novoselova E.V., Belonenko T.V. Peculiarities of Formation the of Density Field in Mesoscale Eddies of the Lofoten Basin: Part 1 // Oceanology. 2021. V. 61. № 6. P. 830–838.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (132KB)
3.

Baixar (75KB)
4.

Baixar (26KB)
5.

Baixar (116KB)
6.

Baixar (142KB)
7.

Baixar (135KB)
8.

Baixar (102KB)

Declaração de direitos autorais © В.В. Жмур, Д.А. Арутюнян, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».