Application of High-Temperature Combustion Method for Measuring Content of Organic Carbon in Faecal Pellets and Small-Sized (≤1 mm) Zooplankton
- 作者: Drits A.V.1, Belayev N.A.1, Karmanov V.A.1, Flint M.V.1
-
隶属关系:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- 期: 卷 63, 编号 1 (2023)
- 页面: 160-168
- 栏目: Instruments and methods
- URL: https://journal-vniispk.ru/0030-1574/article/view/136232
- DOI: https://doi.org/10.31857/S0030157423010021
- EDN: https://elibrary.ru/AFELCX
- ID: 136232
如何引用文章
详细
Organic carbon of fecal pellets and small-sized (≤ 1mm) zooplankton was measured using a high- temperature combustion method. The method was adapted for measurements with Shimadzu TOC-VCPH analyzer equipped with a manual injection module. The range of carbon content values was 30–10 000 ng ind–1. The samples for analysis were collected during the cruises of the R/V “Akademik Mstislav Keldysh”in the Kara Sea in 2019-2021. Relationship between body carbon (C, µg ind-1) and prosome length (L, mm) of zooplankton describes by the equation С = 4.24 L1.84, r2 = 0.85, n = 46. Carbon of field collected fecal pellet varied from 9.4 до 102.9 µg С mm–3. The carbon to chlorophyll a ratio of fecal pellets differed by more than two orders of magnitude. The highest values (542 and 736) were obtained in the bays of the Novaya Zemlya archipelago, the lowest (3–6) on the Kara sea shelf in June 2021 soon after ice melting. The perspectives of implication of high temperature combustion method for studies of zooplankton in situ feeding and to estimate the contribution made by pellets to POC vertical flux are discussed.
作者简介
A. Drits
Shirshov Institute of Oceanology, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: adrits@mail.ru
Russia, Moscow
N. Belayev
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: adrits@mail.ru
Russia, Moscow
V. Karmanov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: adrits@mail.ru
Russia, Moscow
M. Flint
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: adrits@mail.ru
Russia, Moscow
参考
- Арашкевич Е.Г., Флинт М.В., Никишина А.Б. и др. Роль зоопланктона в трансформации органического вещества в обском эстуарии, шельфовых и глубоководных районах Карского моря // Океанология. 2010. Т. 50. № 5. С. 823–836.
- Демидов А.Б., Сергеева В.М., Гагарин В.И. и др. Первичная продукция и хлорофилл размерных групп фитопланктона Карского моря в период схода сезонного льда // Океанология. 2022. Т. 62. № 3. С. 1–14. https://doi.org/10.31857/S0030157422030030
- Демидов А.Б., Гагарин В.И., Еремеева Е.В. и др. Вертикальная изменчивость первичной продукции и хлорофилла в Карском море в середине лета: вклад подповерхностных максимумов в интегральные величины // Океанология. 2021. Т. 61. № 5. С. 737–752. https://doi.org/10.31857/S003015742105004X
- Амелина А.Б., Дриц А.В., Сергеева В.М. и др. Зоопланктон заливов архипелага Новая Земля: состав, распределение, роль в выедании фитопланктона и биоседиментации // Океанология. 2018. Т. 58. № 6. С. 908–922 https://doi.org/10.1134/S0030157418060011
- Abe Y., Natsuike M., Matsuno K. et al. Variation in assimilation efficiencies of dominant Neocalanus and Eucalanus copepods in the subarctic Pacific: Consequences for population structure models // J. Exp. Mar. Biol. Ecol. 2013. V. 449. P. 321–329. https://doi.org/10.1016/j.jembe.2013.10.023
- Ashjian C.J., Campbell R.G., Welch H.E. et al. Annual cycle in abundance, distribution, and size in relation tohydrography of important copepod species in the western Arctic Ocean // Deep-Sea Res. I. 2003 V. 50. P. 1235–1261. https://doi.org/10.1016/S0967-0637(03)00129-8
- Bailey A., Thor P., BrowmanH. I. et al. Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2 // ICES J. of Mar. Sci. 2017. V. 74. P. 996–1004. https://doi.org/10.1093/icesjms/fsw066
- Bamstedt U., Gifford D.J., Irigoien X. et al. Feeding / ICES Zooplankton Methodology Manual / Eds. Harris R. et al. London: Academic Press, 2000. P. 297–380.
- Downs J.N., Lorenzen C.J. Carbon : pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding // Limnol. Oceanogr. 1985. V. 30. № 5. P. 1024–1036.
- Drits A.V., Pasternak A.F., Arashkevich E.G. et al. Influence of riverine discharge and timing of ice retreat on particle sedimentation patterns on the Laptev Sea shelf // J. Geophys. Res.: Oceans. 2021. V. 126. № 10. e2021JC017462. https://doi.org/10.1029/2021JC017462
- Flint M.V., Poyarkov S.G., Rimsky-Korsakov N.A. et al. Ecosystems of the Siberian Arctic Seas–2021: Ecosystem of the Kara Sea in the Period of Seasonal Ice Melting (Cruise 83 of the R/V Akademik Mstislav Keldysh) // Oceanology, 2022. V. 62. N 1, P. 133–135. https://doi.org/10.1134/S0001437022010052
- Forest A., GalindoV., Darnis G. et al. Carbon biomass, elemental ratios (C : N) and stable isotopic composition (d13C,d15N) of dominant calanoid copepods during the winter-to-summer transition in the Amundsen Gulf (Arctic Ocean) // J. Plank. Res. 2011. V. 33. № 1. P. 161–178. https://doi.org/10.1093/plankt/fbq103
- González H.E., González S.R., Brummer G.A. Short-term sedimentation pattern on zooplankton, faeces, and microzooplankton at a permanent station in the Bjornafjorden (Norway) during April–May 1992 // Mar. Ecol. Progr. Ser. 1994. V. 105. P. 31–45.
- González H.E., Smetacek V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material // Mar. Ecol. Progr. Ser. 1994. V. 113. P. 233–246.
- Hirche H.-J. Egg production of the Arctic copepod Calanus glacialis: laboratory experiments // Mar. Biol. 1989. V. 103. P. 311–318.
- Hirche H.-J., Bohrer R. N. Reproduction of the Arctic copepod Calanus glacialis in Fram Strait. Mar. Biol. 1987. V. 94. P. 11–17.
- Holm-Hansen O., Lorenzen C.J., Holmes R.W., Strickland J.D.H. Fluorometric determination of chlorophyll // J. Cons. Perm. Int. Explor. Mer. 1965. V. 30. P. 3–15. https://doi.org/10.3354/meps08608
- Hygum B.H., Hansen B.W. Growth and development of Calanus finmarchicus nauplii during a diatom spring bloom // Mar. Biol. 2000. V. 136. P. 1075–1085.
- Juul-Pedersen T., Michel C., Gosselin M. Sinking export of particulate organic material from the euphotic zone in the eastern Beaufort Sea // Mar. Ecol.: Prog. Ser. 2010V. 410, P. 55–70.
- Landry M. R., Hassett R. P. Fagerness V. et al. Effect of food acclimation on assimilation efficiency of Calanus pacificus // Limnol. Oceanogr. 1984. V. 29. № 2. P. 361–364.
- Latja R., Salonen K. Carbon analysis for the determination of individual biomasses of planktonic animals // Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. 1978. V. 20. № 4. P. 2556–2560. https://doi.org/10.1080/03680770.1977.11896915
- Miquel J.-C., Gasser B., Martín J. et al. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton // Biogeosciences. 2015. V.12. P. 5103–5117. https://doi.org/10.5194/bg-12-5103-2015
- Morales C.E., Bedo A., Harris R.P.et al. Grazing of copepod assemblages in the north-east Atlantic: the importance of the small size fraction // J. Plank. Res. 1991. V 13. № 2. P. 455–472.
- Pasternak A.F. Gut fluorescence in herbivorous copepods: an attempt to justify the method // Hydrobiologia. 1994. V. 292/293. P. 241–248. https://doi.org/10.1007/BF00229947
- Pasternak A., Arashkevich E., Reigstad M. et al. Dividing mesozooplankton into upper and lower size groups: Applications to the grazing impact in the Marginal Ice Zone of the Barents Sea // Deep-Sea Res. II. 2008. V. 55. P. 2245–2256.
- Pond D. W., Ward P. Importance of diatoms for Oithona in Antarctic waters // J. Plank. Res. 2011. V. 33. № 1. P. 105–118.
- Salonen K. A versatile method for the rapid and accurate determination of carbon by high temperature combustion // Limnol. Oceanogr., 1979. V. 24. № l. P. 177–183
- Syvitsky J.P.M., Lewis A.G. Sediment ingestion by Tigriopus californicus and other zooplankton: material transformation and sedimentological considerations // Journal of Sedimentary Petrol. 1980. V. 50. № 3. P. 0869–0880.
- Swalethorp R., Kjellerup S., Dünweber M. et al. Grazing, egg production, and biochemical evidence of differences in the life strategies of Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland // Mar. Ecol. Progr. Ser. 2011. V. 429. P. 125–144. https://doi.org/10.3354/meps09065
- Tang K.W., Dam H.G. Limitation of zooplankton Production: Beyond Stoichiometry // Oikos. 1999. V. 84. № 3. P. 537–542.
- Turner J.T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump // Progress in Oceanography. 2015. V. 130. P. 205–248.
- Urban-Rich J., Hansell D.A., Roman M.R. Analysis of copepod fecal pellet carbon using a high temperature combustion method. // Mar. Ecol. Progr. Ser. 1998. V. 171. P. 199–208. https://doi.org/10.3354/meps171199
- Valdés V., Escribano R., Vergara O. Scaling copepod grazing in a coastal upwelling system: the importance of community size structure for phytoplankton C flux // Lat. Am. J. Aquat. Res. 2017. V. 45. № 1. P. 41–54. https://doi.org/10.3856/vol45-issue1-fulltext-5
- Walve J., Larsson U. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling // J. Plank. Res. 1999. V. 21. № 12. P. 2309–2321.
- Wexels Riser C., Reigstad M., Wassmann P. Zooplankton-mediated carbon export: A seasonal study in a northern Norwegian fjord' // Mar. Biol. Res. 2010. V. 6. № 5. P. 461–471. https://doi.org/10.1080/17451000903437067
- Wilson S.E., Steinberg D.K., Buesseler K.O. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean // Deep Sea Res. Part II. 2008. V. 55. № 14. P. 1636–1647. https://doi.org/10.1016/j.dsr2.2008.04.019
