Influence of Regional Warming on Primary Production of the Kara Sea during the Last Two Decades (2002–2021)
- Authors: Demidov A.B.1, Gagarin V.I.1, Sheberstov S.V.1
-
Affiliations:
- Shirshov Institute of Oceanology Russian Academy of Science
- Issue: Vol 63, No 2 (2023)
- Pages: 224-242
- Section: Морская биология
- URL: https://journal-vniispk.ru/0030-1574/article/view/136237
- DOI: https://doi.org/10.31857/S0030157423020028
- EDN: https://elibrary.ru/NUGIZY
- ID: 136237
Cite item
Abstract
Inter-annual (2002–2021) variability of the Kara Sea PP and associated environmental factors was assessed by MODIS-Aqua data and model calculations. Warming in the Kara Sea region during the last two decades was characterized by the pronounced positive trend of surface water temperature (T0) and weak positive trend of free-ice area (S) averaged for the growing season (April – October). During the investigated period T0 increased by 3.55°C with a trend of 10% y–1 and S increased by 110×103 km2 with a trend of 1.4% y–1, on average. The values of water column PP (IPP) statistically significant (p < 0.05) decreased in the all of the Kara Sea regions (R2 = 0.22 – 0.59). For the entire Kara Sea the IPP declined by 38 mgC m–2 d–1 with a moderate trend of 1.1% y–1 (R2 = 0.37). The growing season averaged value of photosynthetically available radiation (PAR) weak, but statistically significant (p < 0.05), decreased in the all of the Kara Sea areas (R2 = 0.20 – 0.31). Also, in the all regions the significant (R2 = 0.24 – 0.38) weak or moderate negative trends of surface chlorophyll a (Chl) were specified. The total annual PP (PPtot) increased insignificantly in accordance with increase of S (0.7% y–1, R2 = 0.08). The most significant decline of IPP was specified for spring (R2 = 0.28). In autumn the statistically significant positive trend of S (R2 = 0.24) was observed. Due to such increase of S, the strongest growth of PPtot was noted in autumn. In the present work was shown that decrease of IPP, resulting from decline of PAR and Chl, was the reason of moderation of PPtot. Weak increase in PPtot was observed in autumn and in the north area of the sea. It should be concluded that during the period of intense warming, the decrease in the IPP of the Kara Sea should affect the productivity of the higher trophic levels of the food web.
About the authors
A. B. Demidov
Shirshov Institute of Oceanology Russian Academy of Science
Author for correspondence.
Email: demspa@rambler.ru
Russia, Moscow
V. I. Gagarin
Shirshov Institute of Oceanology Russian Academy of Science
Email: demspa@rambler.ru
Russia, Moscow
S. V. Sheberstov
Shirshov Institute of Oceanology Russian Academy of Science
Email: demspa@rambler.ru
Russia, Moscow
References
- Антонов Н.П., Кузнецов В.В., Кузнецова Е.Н. и др. Сайка Boreogadus saida (Gadiformes, Gadidae) как ключевой вид и потенциальный объект рыбного промысла в Карском море // Вопросы рыболовства. 2016. Т. 17. № 2. С. 203–212.
- Ветров А.А., Романкевич Е.А. Первичная продукция и потоки органического углерода на дно в арктических морях Евразии в 2003–2012 гг. // Докл. РАН. 2014. Т. 454. № 1. С. 97–99.
- Галкин С.В. Исследования макробентоса Карского моря в 49м рейсе НИС “Дмитрий Менделеев” // Бентос высокоширотных районов / Отв. ред. Кузнецов А.П., Зезина О.Н. М.: ИОРАН, 1998. С. 34–41.
- Демидов А.Б., Гагарин В.И., Шеберстов С.В. Межгодовая изменчивость первичной продукции Восточно-Сибирского моря // Океанология. 2020. Т. 60. № 6. С. 876–888. https://doi.org/10.31857/S0030157420050044
- Демидов А.Б., Шеберстов С.В., Гагарин В.И. Межгодовая изменчивость ледового покрова и первичной продукции Карского моря // Океанология. 2018. Т. 58. № 4. С. 578–592. https://doi.org/10.1134/S0030157418040019
- Демидов А.Б., Шеберстов С.В., Гагарин В.И. Межгодовая изменчивость первичной продукции моря Лаптевых // Океанология. 2020. Т. 60. № 1. С. 60–73. https://doi.org/10.31857/S0030157420010074
- Демидов А.Б., Шеберстов С.В., Гагарин В.И., Хлебопашев П.В. Сезонная изменчивость первичной продукции фитопланктона Карского моря по спутниковым данным // Океанология. 2017. Т. 57. № 1. С. 103–117. https://doi.org/10.7868/S0030157417010026
- Зацепин А.Г., Завьялов П.О., Кременецкий В.В. и др. Поверхностный опресненный слой в Карском море // Океанология. 2010. Т. 50. № 5. С. 698–708.
- Кузин В.И., Платов Г.А., Лаптева Н.А. Оценка влияния межгодовой изменчивости стока сибирских рек на циркуляцию Северного ледовитого океана // Известия РАН. Физика атмосферы и океана. 2015. Т. 51. № 4. С. 437–447. https://doi.org/10.7868/S0002351515040069
- Кузнецов А.П. Трофическая структура донной фауны Карского моря // Донная фауна краевых морей СССР / Отв. ред. Кузнецов А.П. М.: ИОАН, 1976. С. 32–60.
- Кузнецова О.А., Копелевич О.В., Шеберстов С.В. и др. Оценка концентрации хлорофилла в Карском море по данным спутникового сканера MODIS-AQUA // Исслед. Земли из космоса. 2013. № 5. С. 21–31.
- Маккавеев П.Н., Стунжас П.А. Гидрохимическая характеристика вод Карского моря // Океанология. 1994. Т. 34. № 5. С. 662–667.
- Флинт М.В., Анисимов И.М., Арашкевич Е.Г. и др. Экосистемы Карского моря и моря Лаптевых. Материалы экспедиционных исследований 2016 и 2018 гг. / ИО РАН, М.: 2021. 368 с.
- Шалина Е.В. Сокращение ледяного покрова Арктики по данным спутникового пассивного микроволнового зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2013. Т. 10. № 1. С. 328–336.
- Шеберстов С.В. Система пакетной обработки океанологических спутниковых данных // Современные проблемы дистанционного зондирования Земли из космоса. 2015. Т. 12. № 6. С. 154–161.
- Юлин А.В., Вязигина Н.А., Егорова Е.С. Межгодовая и сезонная изменчивость площади льдов в Северном ледовитом океане по данным спутниковых наблюдений // Российская Арктика. 2019. Т. 7. С. 28–40. https://doi.org/10.24411/2658-4255-2019-10073
- Ardyna M., Gosselin M., Michel C. et al. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions // Mar. Ecol. Progr. Ser. 2011. V. 442. P. 37–57.
- Arrigo K.R., van Dijken G.L. Secular trends in Arctic Ocean net primary production // J. Geophys. Res. 2011. V. 116. C09011. 15 p. https://doi.org/10.1029/2011JC007151
- Arrigo K.R., van Dijken G.L. Continued increases in Arctic Ocean primary production // Progr. in Oceanogr. 2015. V. 136. P. 60–70.
- Arrigo K.R., van Dijken G.L., Pabi S. Impact of a shrinking Arctic ice cover on marine primary production // Geophys. Res. Lett. 2008. V. 35. № 19. L19603. 6 p. https://doi.org/10.1029/2008GL035028
- Bélanger S., Babin M., Tremblay J.-E. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding // Biogeosciences. 2013. V. 10. № 6. P. 4087–4101.
- Brugel S., Nozais C., Poulin M. et al. Phytoplankton biomass and production in the southeastern Beaufort Sea in autumn 2002 and 2003 // Mar. Ecol. Progr. Ser. 2009. V. 377. P. 63–77.
- Campbell J., Antoine D., Armstrong R. et al. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance // Global Biogeochemical Cycles. 2002. V. 16. 1035. 9 p. https://doi.org/10.1029/2001GB001444
- Cavalieri D.J., Parkinson C.L., Gloersen P., Zwally H.J. Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: October 1978-September 1995 // User’s Guide. NASA TM 104647. 1997. Goddard Space Flight Center, Greenbelt. 17 p.
- Cavalieri D.J., Parkinson C.L. Arctic sea ice variability and trends, 1979–2010 // Cryosphere. 2012. V. 6. P. 881–889.
- Chernokulsky A., Mokhov I. Climatology of Total Cloudiness in the Arctic: An Intercomparison of Observations and Reanalyses // Advances in Meteorology. 2012. Art. ID 542093, 15 p. https://doi.org/10.1155/2012/542093
- Comiso J.C. The rapid decline of multiyear ice cover // J. Clim. 2012. V. 25. № 4. P. 1176–1193. https://doi.org/10.1175/JCLI-D11-00113.1
- Comiso J.C., Nishio F. Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I, and SMMR Data // J. Geophys. Res. 2008. V. 113. C02S07. https://doi.org/10.1029/2007JC0043257
- Comiso J.C., Parkinson C.L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover // Geophys. Res. Lett. 2008. V. 35. L01703. https://doi.org/10.1029/2007GL031972
- Cooper L.W., Benner R., McClelland J.W. et al. Linkages among runoff, dissolved organic carbon and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean // J. Geophys. Res. 2005. V. 110. G02013. https://doi.org/10.1029/2005JG000031
- Demidov A.B., Kopelevich O.V., Mosharov S.A., Sheberstov S.V., Vazyulya S.V. Modelling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms // J. Sea Res. 2017. V. 125. P. 1–17. https://doi.org/10.1016/j.seares.2017.05.004
- Demidov A.B., Mosharov S.A., Makkaveev P.N. Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer // J. Mar. Sys. 2014. V. 132. P. 130–149.
- Dupont F. Impact of sea-ice biology on overall primary production in a biophysical model of the pan-Arctic Ocean // J. Geophys. Res. 2012. V. 117. C00D17, https://doi.org/10.1029/2011JC006983
- Falkowski P. Light-shade adaptation and assimilation numbers // J. Plankton Res. 1981. V. 3. P. 203–216.
- Frouin R., McPherson J., Ueyoshi K., Franz B.A. A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data // Proc. SPIE 12. https://doi.org/10.1117/1112.981264
- Gibson G., Weijer W., Jeffery N., Wang S. Relative impact of sea ice and temperature changes on Arctic marine production // J. Geophys. Res.: Biogeosciences. 2020. V. 125. https://doi.org/10.1029/2019JG005343
- Gordeev V.V., Martin J.M., Sidorov I.S., Sidorova M.V. A reassessment of the Eurasian river input of water, sediment, major elements and nutrients to the Arctic Ocean // Am. J. Sci. 1996. V. 296. № 6. P. 664–691.
- Hansell D.A., Kadko D., Bates N.R. Degradation of terrigenous dissolved organic carbon in the Western Arctic Ocean // Science. 2004. V. 304. P. 858–861.
- Hanzlick D., Aagaard K. Freshwater and Atlantic water in the Kara Sea // J. Geophys. Res. 1980. V. 85. № C9. P. 4937–4942.
- He M., Hu Y., Chen N. et al. High cloud coverage over melted areas dominates the impact of clouds on the albedo feedback in the Arctic // Scientific Reports. 2019. https://doi.org/10.1038/s41598-019-44155-w
- Hegseth E.N. Phytoplankton of the Barents Sea–the end of a growth season // Pol. Biol. 1997. V. 17. № 3. P. 235–241.
- Holmes R.M., McClelland J.W., Peterson B.J. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas // Estuaries and Coasts. 2012. V. 35. P. 369–382.
- Holmes R.M., McClelland J.W., Raymond P.A. et al. Lability of DOC transported by Alaskan rivers to the Arctic Ocean // Geophys. Res. Lett. 2008. V. 35. L03402. https://doi.org/10.1029/2007GL032837
- Hill V., Cota G. Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002 // Deep-Sea Res. II. 2005. V. 57. № 24–26. P. 3344–3354.
- Hill V.J., Matrai P.A., Olson E. et al. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates // Progr. in Oceanogr. 2013. V. 110. P. 107–125.
- IOCCG, 2000. Remote sensing of ocean colour in coastal and other opticall-complex waters. Sathyendranath, S. (Ed.). Reports of the International Ocean-Colour Coordinating Group. 3, IOCCG, Dartmouth, Canada. 140 p.
- IOCCG, 2015. Ocean Colour Remote Sensing in Polar Seas. Babin M. et al. (Eds.) Reports of the International Ocean-Colour Coordinating Group. 16, IOCCG, Dartmouth, Canada. 130 p.
- Kahru M., Lee Z., Mitchell G., Nevison C. Effects of sea ice cover on satellite detected primary production in the Arctic Ocean // Biol. Lett. 2016. V. 12. https://doi.org/10.1098/rsbl.2016.0223
- Kubryakov A., Stanichny S., Zatsepin A. River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data // Rem. Sens. Env. 2016. V. 176. P. 177–187.
- Kwok R., Cunningham G.F., Wensnahan M. et al. Thinning and volume loss of Arctic sea ice: 2003–2008 // J. Geophys. Res. 2009. V. 114. C07005. https://doi.org/10.1029/2009JC005312
- Lee Y.J., Matrai P.A., Friedrichs M.A.M. et al. An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models // J. Geophys. Res. 2015. V. 120. https://doi.org/10.1002/2015/JC11018
- Lee S.H., Whitledge T.E. Primary and new production in the deep Canada Basin during summer 2002 // Pol. Biol. 2005. V. 28. № 3. P. 190–197.
- Le Fouest V., Babin M., Trembley J.-É. The fate of riverine nutrients on Arctic shelves // Biogeosciences. 2013. V. 10. № 6. P. 3661–3677.
- Leu E., Søreide J.E., Hessen D.O. et al. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality // Progr. Oceanogr. 2011. V. 90. P. 18–32.
- Lewis K.M., Mitchell B.G., van Dijken G.L., Arrigo K.R. Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates // Deep-Sea Res. II. 2016. V. 130. P. 14–27.
- Lewis K.M., van Dijken G.L., Arrigo K.R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production // Science. 2020. V. 369. P. 198–202.
- Mewes B., Jacobi C. Heat transport pathways into the Arctic and their connections to surface air temperatures // Atmos. Chem. Phys. 2019. V. 19. P. 3927–3937. https://doi.org/10.5194/acp-19-3927-2019
- Opsahl S., Benner R., Amon R.W. Major flux of terrigenous dissolved organic matter through the Arctic Ocean // Limnol. Ocenogr. 1999. V. 44. № 8. P. 2017–2023.
- Osburn C.L., Retamal L., Vincent W.F. Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea // Mar. Chem. 2009. V. 115. № 1–2. P. 10–20.
- Pabi S., van Dijken G.L., Arrigo K.R. Primary production in the Arctic Ocean, 1998–2006 // J. Geophys. Res. 2008. V. 113. C08005. https://doi.org/10.1029/2007/JC004578
- Petrenko D., Pozdnyakov D., Johannessen J. et al. Satellite-derived multi-year trend in primary production in the Arctic Ocean // Inter. J. Rem. Sens. 2013. V. 34. P. 3903–3937.
- Pivovarov S., Schlitzer R., Novikhin A. River run-off influence on the water mass formation in the Kara Sea // Siberian river run-off in the Kara Sea / Eds. Stein R. et al. Amsterdam: Elsevier, 2003. P. 9–25.
- Platt T., Harrison W.G., Horne E.P.W., Irwin B. Carbon fixation and oxygen evolution by phytoplankton in the Canadian High Arctic // Pol. Biol. 1987. V. 8. № 2. P. 103–113.
- Polyakov I.V., Alkire M.B., Bluhm B.A. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-arctic seas // Front. Mar. Sci. 2020. V. 7. № 491.https://doi.org/10.3389/fmars.2020.00491
- Shiklomanov A.I., Holmes R.M., McClelland J.W. et al. Arctic Great Rivers Observatory // Discharge Dataset, Version 20220425. 2021.
- Reynolds R.W., Smith T.M., Liu C. et al. Daily High-Resolution-Blended Analyses for Sea Surface Temperature // J. Clim. 2007. V. 20. № 22. P.5473–5496.
- Stein R. Circum Arctic river discharge and its geological record // Int. J. Earth Science. 2000. V. 89. P. 447–449.
- Stroeve J., Holland M., Meier W. et al. Arctic sea ice decline: Faster than forecast // Geophys. Res. Lett. 2007. V. 34. L09501. https://doi.org/10.1029/2007GL029703
- Stroeve J.C., Kattsov V., Barrett A.P. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations // Geophys. Res. Lett. 2012. V. 39. L16502. https://doi.org/10.1029/2012GL052676
- Stroeve J.C., Serreze M.C., Holland M.M. et al. The Arctic’s rapidly shrinking sea ice cover: A research synthesis // Clim. Change. 2012. V. 110. P. 1005–1027.
- Timmermans M.-L., Ladd C. Sea surface temperature // Arctic Report Card: Update for 2018 https://arctic.noaa.gov/Report-Card-2018/ArtMID/7878/ArticleID/779/Sea-Surface-Temperature.
- Vancoppenolle M., Bopp L., Madec G. et al. Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms // Global Biogeochem. Cycle. 2013. V. 27. P. 605–619. https://doi.org/10.1002/gbc.20055
- Vavrus S., Holland M.M., Bailey D.A. Changes in Arctic clouds during intervals of rapid sea ice loss // Clim. Dyn. 2011. V. 36. P. 1475–1489. https://doi.org/10.1007/s00382-010-0816-0
- Wu Z., Wang X. Variability of Arctic Sea Ice (1979–2016) // Water. 2019. V. 11. № 23. https://doi.org/10.3390/w11010023
- Yun M.S., Chung K.H., Zimmermann S. et al. Phytoplankton productivity and its response to higher light levels in the Canada Basin // Pol. Biol. 2012. V. 35. № 2. P. 257–268.
- Zalota A.K., Spiridonov V.A., Vedenin A.A. Development of snow crab Chionoecetes opilio (Crustacea: Decapoda: Oregonidae) invasion in the Kara Sea // Pol. Biol. 2018. doi.org/.https://doi.org/10.1007/s00300-018-2337-y
- Zhang J., Spitz Y.H., Steele M. et al. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem // J. Geophys. Res. 2010. V. 115. C10015. https://doi.org/10.1029/2009/JC005387
Supplementary files
