Extreme Sea Level Variations in the Sea of Japan Caused by the Passage of Typhoons Maysak and Haishen in September 2020

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study investigates extreme sea level variations recorded by tide gauges in the Sea of Japan during the passages of typhoons Maysak and Haishen in September 2020. Specific focus is on storm surges, seiches and infragravity waves identified in the records using tidal and statistical analyses. At most locations, storm surges, formed through the combined effect of atmospheric pressure changes and strong winds, were the major contributors to the extreme sea level events. For the Russian and Japanese coasts, the first typhoon, Maysak, turned out to have the greatest impact, while for the southeastern coast of the Korean Peninsula, the largest sea level variations were caused by the second typhoon, Haishen. At all sites, the passing storms induced eigen oscillations in the respective bays and harbours. Pronounced high-frequency oscillations with periods of two to seven minutes, which appear to be associated with infragravity waves, were recorded, reaching a maximum range of 2 m at Preobrazheniye. The observed differences in component content and associated characteristics of the observed sea level variations arise from differences in the topographic features of the corresponding coastal sites. Statistical analysis of the atmospheric pressure and wind speed series taken from weather stations and from the ERA5 reanalysis shows that atmospheric pressure is reproduced by reanalysis with high accuracy, whereas wind speed at different stations has significant discrepancies related to differences in orographic features.

作者简介

D. Smirnova

Lomonosov Moscow State University; Shirshov Institute of Oceanology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: moscowdadas@gmail.com
Russia, Moscow; Russia, Moscow

I. Medvedev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: moscowdadas@gmail.com
Russia, Moscow

参考

  1. Гидрометеорология и гидрохимия морей. Том 08. Японское море. Выпуск 1. Гидрометеорологические условия. Справочник. Проект Моря. Санкт-Петербург: Гидрометеоиздат, 2003. 397 с.
  2. Мамедов Э.С., Павлов Н.И. Тайфуны. Л.: Гидрометеоиздат, 1975. 144 с.
  3. Портал РП5: https://rp5.ru (Дата обращения: 15.04.2021).
  4. Портал NOAA Historical Hurricane Tracks: https:// coast.noaa.gov/hurricanes/#map=4/32/-80 (Дата обращения: 02.12.2020).
  5. Рабинович А.Б. Длинные гравитационные волны в океане: захват, резонанс, излучение. СПб: Гидрометеоиздат, 1993. 326 с.
  6. Российская служба предупреждения о цунами: http://www.rtws.ru/ (Дата обращения: 17.09.2020)
  7. Смирнов С.В. О сейшевых колебаниях в заливе Находка // Метеорология и гидрология. 2016. № 1. С. 78–85.
  8. Chupin V., Dolgikh G., Dolgikh S., Smirnov S. Study of free oscillations of bays in the northwestern part of Posyet Bay // Journal of Marine Science and Engineering. 2022. V. 10. № 8. P. 1005. https://doi.org/10.3390/jmse10081005
  9. Flanders Marine Institute (VLIZ); Intergovernmental Oceanographic Commission (IOC) (2022): Sea level station monitoring facility: http://www.ioc-sealevelmonitoring.org/map.php (Дата обращения: 17.09.2020). https://doi.org/10.14284/482
  10. Ha K.M. Predicting typhoon tracks around Korea // Natural Hazards. 2022. V. 106. P. 1639–1672. https://doi.org/10.1007/s11069-022-05335-6
  11. Heidarzadeh M., Rabinovich A.B. Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan // Natural Hazards. 2021. V. 106. P. 1639–1672. https://doi.org/10.1007/s11069-020-04448-0
  12. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. № 730. P. 1999–2049. https://doi.org/10.1002/qj.3803
  13. Hibiya T., Kajiura K. Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay // J. Oceanogr. Soc. Japan. 1982. V. 38. P. 172–182.
  14. Kim H.J., Kim D.B., Jeong O.J., Moon Y.S. The moving speed of typhoons of recent years (2018-2020) and changes in total precipitable water vapor around the Korean Peninsula // Journal of the Korean Earth Science Society. 2021. V. 42. № 3. P. 264–277. https://doi.org/10.5467/JKESS.2021.42.3.264
  15. Lin L.C., Wu C.H. Unexpected meteotsunamis prior to Typhoon Wipha and Typhoon Neoguri // Natural Hazards. 2021. V. 106. P. 1673–1686. https://doi.org/10.1007/s11069-020-04313-0
  16. MacMahan J. Low-frequency seiche in a large bay // J. Phys. Oceanogr. 2015. V. 45, P. 716–723. https://doi.org/10.1175/JPO-D-14-0169.1
  17. Medvedev I.P., Rabinovich A.B., Šepić J. Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020 // Scientific Reports. 2022. V. 12. № 8463. https://doi.org/10.1038/s41598-022-12189-2
  18. Monserrat S., Vilibić I., Rabinovich A.B. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band // Natural Hazards and Earth System Sciences. 2006. V. 6. № 6. P. 1035–1051. https://doi.org/10.5194/nhess-6-1035-2006
  19. Munk W.H. Surf beats // EOS, Transactions American Geophysical Union. 1949. V. 30. № 6. P. 849–854. https://doi.org/10.1029/TR030i006p00849
  20. Rabinovich A.B. Seiches and harbor oscillations. In: Handbook of Coastal and Ocean Engineering / Ed. Kim. Y.C. Chapter 9. World Scientific Publ., Singapore, 2009. P. 193–236.
  21. Smirnov S.V. Yaroshchuk I.O., Shvyrev A.N. et al. Resonant oscillations in the western part of the Peter the Great Gulf in the Sea of Japan // Natural Hazards. 2021. V. 106. № 2. P. 1729–1745. https://doi.org/10.1007/s11069-021-04561-8
  22. Yuk J.H., Kang J.S., Myung H. Applicability study of a global numerical weather prediction model MPAS to storm surges and waves in the south coast of Korea // Atmosphere. 2022. V. 13. № 4. P. 591. https://doi.org/10.3390/atmos13040591
  23. Zhu D., Zhi X., Wang N. et al. Impacts of Changbai Mountain topography on the extreme precipitation from super typhoon Maysak // Front. Environ. Sci. V. 9. № 818402. https://doi.org/10.3389/fenvs.2021.818402

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (386KB)
4.

下载 (2MB)
5.

下载 (962KB)
6.

下载 (749KB)
7.

下载 (917KB)
8.

下载 (1MB)

版权所有 © Д.А. Смирнова, И.П. Медведев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».