Utilization of Nutrients Entering Through the Bering Strait to the Southwestern Chukchi Sea with the Example of Mineral Phosphorus
- 作者: Zuenko Y.I.1
-
隶属关系:
- Тихоокеанский филиал (ТИНРО) Всероссийского НИИ рыбного хозяйства и океанографии
- 期: 卷 64, 编号 3 (2024)
- 页面: 424-437
- 栏目: Химия моря
- URL: https://journal-vniispk.ru/0030-1574/article/view/272922
- DOI: https://doi.org/10.31857/S0030157424030045
- EDN: https://elibrary.ru/QCMHKS
- ID: 272922
如何引用文章
详细
Spatial variations of nutrients along the northwestward stream from Bering Sea to Chukchi Sea are considered for dissolved inorganic phosphorus (DIP) on the data of two surveys conducted in early September of 2010 and 2020. The waters of Bering Sea origin have higher DIP than the waters of Chukchi Sea, but in the upper layer gradually loose phosphorus because of both mixing with local waters and consumption for photosynthesis. In the subsurface layer, the DIP decreasing is prevented by its recycling from destructed organics. The fluxes of phosphorus are estimated separately using the balance model with TS-analysis, previously used in estuarine studies. Successive utilization of DIP along the stream is traced, that forms in the Chukchi Sea two zones of high productivity divided by wide low-productive zone. The nutrients from the upper layer are utilized within the southwestern Chukchi Sea providing primary production 0.1–0.2 gC/m3day, but the main stock of allochtonous nutrients from the subsurface layer is utilized further downstream (at Wrangel Is. or in the northern Chukchi Sea) and provides the production of 0.3–0.4 gC/m3day. Localization of the high-productive zones is determined by density stratification that possibly depends on the stream strength: the stronger advection through Bering Strait – the further from the strait both zones are located. Recent tendency of the stream strengthening tends to remove the zones of utilization the nutrients of Pacific origin out of the southwestern Chukchi Sea.
全文:

作者简介
Yu. Zuenko
Тихоокеанский филиал (ТИНРО) Всероссийского НИИ рыбного хозяйства и океанографии
编辑信件的主要联系方式.
Email: zuenko_yury@hotmail.com
ORCID iD: 0000-0003-1312-542X
俄罗斯联邦, Владивосток
参考
- Важова А.С., Зуенко Ю.И. Оценка первичной продукции эстуариев рек Раздольная и Суходол (зал. Петра Великого. Японское море) // Известия ТИНРО. 2015. Т. 182. С. 132–143.
- Звалинский В.И., Недашковский А.П., Сагалаев С.Г. и др. Биогенные элементы и первичная продукция эстуария реки Раздольной // Биология моря. 2005. Т. 31. № 2. С. 107–116.
- Кузнецова Н.А., Горбатенко К.М., Фигуркин А.Л. Новые данные по составу, структуре и биомассе зоопланктона в Чукотском море в августе-сентябре 2019 г. // Известия ТИНРО. 2022. Т. 202. № 1. С. 122–145. https://doi.org/10.26428/1606-9919-2022–202-122-145
- Мамаев О.И. Термохалинный анализ вод Мирового океана. Л.: Гидрометеоиздат, 1987. 296 с.
- Руководство по химическому анализу морских и пресных вод при экологическом мониторинге рыбохозяйственных водоемов и перспективных для промысла районов Мирового океана / Под ред. Сапожникова В.В. М.: ВНИРО, 2003. 202 с.
- Супранович Т.И., Юрасов Г.И., Кантаков Г.А. Непериодические течения и водообмен в проливе Лаперуза // Метеорология и гидрология. 2001. № 3. С. 80–84.
- Хен Г.В., Басюк Е.О., Кивва К.К. Водные массы и рыбные сообщества в северо-западной части Берингова и западной части Чукотского морей летом 2003–2010 гг. // Труды ВНИРО. 2018. Т. 173. С. 137–156.
- Arrigo K.R., van Dijken G., Pabi S. Impact of a shrinking Arctic ice cover on marine primary production // Geophys. Res. Lett. 2008. V. 35. L. 19603. https://doi.org/10.1029/2008GL035028
- Arrigo K.R., van Dijken G.L. Continued increases in Arctic Ocean primary production // Progress in Oceanography. 2015. V. 136, № 5. P. 60–70. https://doi.org/10.1016/j.pocean.2015.05.002
- Coachman L.K., Aagaard K., Tripp R.B. 1975. Bering Strait. The regional physical oceanography. Seattle and London: University of Washington Press, 1975. 172 p.
- Danielson S.L., Ahkinga O., Ashjian C. et al. Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental shelves // Deep-Sea Research Part II. 2020. V. 177. 104781. https://doi.org/10.1016/j.dsr2.2020.104781
- Dean K.G., McRoy C.P., Ahlnäs K., Springer A. The plume of the Yukon River in relation to the oceanography of the Bering Sea // Remote Sensing of Environment. 1989. V. 28. P. 75–84.
- Grebmeier J.M., Frey K.E., Cooper L.W., Kędra M. 2018. Trends in benthic macrofaunal populations, seasonal sea ice persistence, and bottom water temperatures in the Bering Strait region // Oceanography. 2018. V. 31. № 2. P. 136–151. https://doi.org/10.5670/oceanog.2018.224
- Kawaguchi Y., Nishioka J., Nishino S. et al. Cold water upwelling near the Anadyr Strait: observations and simulations // JGR Oceans. 2020. V. 125. Iss. 9. e2020JC016238. https://doi.org/10.1029/2020JC016238
- Lee S.H., Whitledge T.E., Kang S.H. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea // Cont. Shelf Res. 2007. V. 27. P. 2231–2249.
- Linders J., Pickart R., Björk G., Moore G. On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009 // Progr. Oceanogr. 2017. V. 159. P. 99–114. https://doi.org/10.1016/j.pocean.2017.09.005
- Pisareva M.N. An overview of the recent research on the Chukchi Sea water masses and their circulation // Russian Journal of Earth Sciences. 2018. V. 18. ES4005. https://doi.org/10.2205/2018ES000631
- Pisareva M.N., Pickart R.S., Spall M.A. et al. Flow of pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition // Deep-Sea Research Part I. 2015. V. 105. P. 53–73.
- Yang Y., Bai X. Summer changes in water mass characteristics and vertical thermohaline structure in the eastern Chukchi Sea, 1974–2017 // Water. 2020. V. 12. 1434. https://doi.org/10.3390/w12051434
- Yun M.S., Whitledge T.E., Stockwell D. et al. Primary production in the Chukchi Sea with potential effects of freshwater content // Biogeosciences. 2016. V. 13. P. 737–749. https://doi.org/10.5194/bg-13-737-2016
补充文件
