Decadal changes in taxocenes of Nematoda and Harpacticoida in Blagopoluchiya Bay (Kara Sea)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present paper describes the results of studies of two main components of meiobenthos – nematodes and harpacticoid copepods – conducted in 2013 and 2020 in Blagopoluchiya Bay (Novaya Zemlya, Kara Sea). A mosaic distribution of the two taxonomic groups was observed due to high species diversity and low occurrence of most species. Nevertheless, we identified patterns in the changes in the species structure of both groups related to the effect of two main environmental gradients (spatial gradient, related to the distance from the mouth of the bay to the sea, and depth-related gradient) as well as to the mosaic distribution of sediments. Changes among 2013 and 2020 were analyzed. In the seven years between the two surveys in Blagopoluchiya Bay, the abundance of nematodes increased tenfold, the copepod abundance also increased, but to a much lesser extent. Taxonomic changes in the two groups were observed at both species and family levels, with no differences in the functional structure of the taxa. The observed changes may be related both to changes in abiotic factors, and to general changes in the trophic system of the bay due to the introduction of the snow crab Chionoecetes opilio.

About the authors

D. V. Kondar

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: kondaria@gmail.com
Russian Federation, Moscow, 117218

P. V. Lepikhina

Doumo

Email: kondaria@gmail.com
Portugal, Coimbra

L. A. Garlitska

Scientific Center of Zoology and Hydroecology, National Academy of Sciences of the Republic of Armenia

Email: kondaria@gmail.com
Armenia, Yerevan, 0014

A. A. Udalov

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kondaria@gmail.com
Russian Federation, Moscow, 117218

M. V. Chikina

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kondaria@gmail.com
Russian Federation, Moscow, 117218

V. O. Mokievsky

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: kondaria@gmail.com
Russian Federation, Moscow, 117218

References

  1. Галкин С.В., Залота А.К., Удалов А.А., Пронин А.А. Оценка плотности популяций краба-вселенца Сhionoecetes opilio в Карском море с использованием БНПА “Видеомодуль” // Современные методы и средства океанологических исследований (МСОИ–2021). 2021. C. 207–210.
  2. Гальцова В.В., Кулангиева Л.В., Погребов В.Б. Мейобентос из районов бывшего ядерного полигона и мест захоронения радиоактивных отходов вокруг архипелага Новая Земля (Баренцево и Карское моря) // Биология моря. 2004. T. 30. № 4. C. 263–271.
  3. Гарлицкая Л.А., Чертопруд Е.С., Портнова Д.А., Азовский А.И. Бентосные Harpacticoida Карского моря: видовой состав и распределение на градиенте глубин // Океанология. 2019. T. 59. № 4. C. 600–611.
  4. Карклин В.П., Юлин А.В., Шаратунова M.В., Мочнова Л.П. Климатическая изменчивость ледяных массивов Карского моря // Проблемы Арктики и Антарктики. 2017. № 4. C. 37–46.
  5. Лепихина П.П., Басин А.Б., Кондарь Д.В. и др. Изменение количественных характеристик макро- и мейобентоса в заливе Благополучия с 2013 по 2020 г. (Новая Земля, Карское море) // Океанология. 2022. T. 62. № 2. C. 235–244.
  6. Мокиевский В.О., Воробьева Л.В., Гарлицкая Л.А. и др. Многолетние изменения в мейобентосе восточной части Черного моря // Океанология. 2010. T. 50. № 6. C. 994–1001.
  7. Портнова Д.А., Гарлицкая Л.А., Удалов А.А., Кондарь Д.В. Мейобентос и сообщество нематод Енисейского залива и прилегающего шельфа Карского моря // Океанология. 2017. T. 57. № 1. C. 146–159.
  8. Руднева Е.В., Удалов А.А., Залота А.К., Чикина М.В. Изменения донных сообществ центральной части Карского моря в результате вселения краба-стригуна Сhionoecetes opilio // Морские исследования и образование (MARESEDU). 2022. C. 320–324.
  9. Соколов А.М. Интродукция краба-стригуна опилио в Карское море: пример дальнейшей адаптивной стратегии этого вида в российском секторе Арктики (по результатам исследований ПИНРО в 2013 г.) // Рыбное хозяйство. 2014. № 6. C. 63–68.
  10. Удалов А.А., Анисимов И.М., Муравья В.О. и др. Различия сообществ мегабентоса восточной и западной частей Карского моря по результатам видеонаблюдений // Океанология, в печати.
  11. Шереметевский А.М. К вопросу о компенсации развития макробентоса мейобентосом на примере мидиевых банок Белого моря // Экология моря. 1991. T. 39. C. 89–92.
  12. Alexeev D.K., Galtsova V.V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf // Polar Science. 2012. V. 6. P. 183–195.
  13. Alves A.S., Adão H., Ferrero T.J. et al. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment // Ecological Indicators. 2013. V. 24. P. 462–475.
  14. Azovsky A.I., Chertoprud E.S., Garlitska L.A. Environmental stability and long-term variability of harpacticoid copepod assemblages // Marine Biology. 2022. Article 169:67. 12 p.
  15. Bianchi T.S., Arndt S., Austin W.E.N. et al. Fjords as Aquatic Critical Zones (ACZs) // Earth-Science Reviews. 2020. V. 203. P. 103–145.
  16. Burgess R. An improved protocol for separating meiofauna from sediments using colloidal silica sols // Marine Ecology Progress Series. 2001. V. 214. P. 161–165.
  17. Clarke K., Gorley R.J.P.-E. Plymouth. PRIMER Version 7.0. 12: User Manual/Tutorial // PRIMER-E, 2015. 189 p.
  18. Coull B.C. Are members of the meiofauna food for higher trophic levels? // Transactions of the American Microscopical Society. 1990. V. 109. P. 233–246.
  19. Galtsova V., Alexeev D. Benthic communities of Russian Arctic Seas under radioactive pollution condition // Radioprotection. 2009. V. 44. No. 5. P. 713–718.
  20. Giere O. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer Science & Business Media, 2008. 526 p.
  21. Grzelak K., Kotwicki L. Meiofaunal distribution in Hornsund fjord, Spitsbergen // Polar Biology. 2012. V. 35. P. 269–280.
  22. Hicks G. The ecology of marine meiobenthic harpacticoid copepods // Oceanogr. Mar. Biol. Anu. Rev. 1983. V. 21. P. 67–175.
  23. Kennedy A.D., Jacoby C.A. Biological indicators of marine environmental health: meiofauna–a neglected benthic component? // Environmental Monitoring Assessment. 1999. V. 54. P. 47–68.
  24. Kotwicki L., Szymelfenig M., De Troch M., Zajaczkowski M. Distribution of meiofauna in Kongsfjorden, Spitsbergen // Polar Biology. 2004. V. 27. № 11. P. 661–669.
  25. Legendre P., Anderson M.J. Distance‐based redundancy analysis: testing multispecies responses in multifactorial ecological experiments // Ecological monographs. 1999. V. 69. No. 1. P. 1–24.
  26. Nemys. World Database of Nematodes. Accessed at https://nemys.ugent.be on 2023-08-18. doi: 10.14284/366 //.
  27. Pawłowska J., Włodarska-Kowalczuk M., Zajączkowski M. et al. Seasonal variability of meio- and macrobenthic standing stocks and diversity in an Arctic fjord (Adventfjorden, Spitsbergen) // Polar Biology. 2011. V. 34. № 6. P. 833–845.
  28. Pogrebov V., Fokin S., Galtsova V., Ivanov G. Benthic communities as influenced by nuclear testing and radioactive waste disposal off Novaya Zemlya in the Russian Arctic // Marine pollution bulletin. 1997. V. 35. № 7–12. P. 333–339.
  29. Schratzberger M., Ingels J. Meiofauna matters: the roles of meiofauna in benthic ecosystems // Journal of Experimental Marine Biology and Ecology. 2018. V. 502. P. 12–25.
  30. Schratzberger M., Warwick R. Effects of physical disturbance on nematode communities in sand and mud: a microcosm experiment // Marine Biology. 1998. V. 130. P. 643–650.
  31. Soltwedel T., Grzelak K., Hasemann C. Spatial and temporal variation in deep-sea meiofauna at the LTER Observatory HAUSGARTEN in the Fram Strait (Arctic Ocean) // Diversity. 2020. V. 12. No. 7. Art. 279. 23 p.
  32. Steyaert M., Moodley L., Nadong T. et al. Responses of intertidal nematodes to short-term anoxic events // Journal of Experimental Marine Biology and Ecology. 2007. V. 345. № 2. P. 175–184.
  33. Wetzel M., Weber A., Giere O. Re-colonization of anoxic/sulfidic sediments by marine nematodes after experimental removal of macroalgal cover // Marine Biology. 2002. V. 141. P. 679–689.
  34. Wieser V.W. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden: eine ökologisch-morphologische Studie // Arkiv för zoologi. 1953. Bd. 2. Folg. 4. S. 439–484.
  35. Włodarska-Kowalczuk M., Górska B., Deja K., Morata N. Do benthic meiofaunal and macrofaunal communities respond to seasonality in pelagial processes in an Arctic fjord (Kongsfjorden, Spitsbergen)? // Polar Biology. 2016. V. 39. № 11. P. 2115–2129.
  36. Wlodarska-Kowalczuk M., Pearson T.H., Kendall M.A. Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord // Marine Ecology Progress Series. 2005. V. 303. P. 31–41.
  37. Wojtasik B., Nowiński K., Staniszewska W., Kheireddine A. Seasonal variability of meiobenthic assemblages inhabiting the Nottinghambukta tidal flat, SW Spitsbergen // Limnological Review. 2019. V. 19. № 4. P. 175–189.
  38. WoRMS. World Register of Marine Species Available from https://www.marinespecies.org at VLIZ. Accessed 2023-11-08.doi: 10.14284/170 //.
  39. Zalota A.K., Spiridonov V.A., Vedenin A.A. Development of snow crab Chionoecetes opilio (Crustacea: Decapoda: Oregonidae) invasion in the Kara Sea // Polar Biology. 2018. V. 41. No. 10. P. 1983–1994.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».