Comparison of Environments of the last Interglacial and the Holocene in the Lofoten Basin (Norwegian Sea)
- Authors: Matul А.1, Novichkova Е.1, Chekhovskaya М.1, Lozinskaia L.1, Behera P.2,3, Tiwari М.2, Мohan R.2, Кravchishina М.1
-
Affiliations:
- Shirshov Institute of Oceanology of Russian Academy of Sciences
- National Centre of Polar and Ocean Research
- University of Leicester
- Issue: Vol 64, No 6 (2024)
- Pages: 987-994
- Section: Морская биология
- URL: https://journal-vniispk.ru/0030-1574/article/view/284950
- DOI: https://doi.org/10.31857/S0030157424060107
- EDN: https://elibrary.ru/FHUDWM
- ID: 284950
Cite item
Abstract
Based on sedimentological, isotope-geochemical and micropaleontological parameters of bottom sediments of the core AMK-5188, differences in the natural environment of the last interglacial of the Late Pleistocene (marine oxygen isotope substage 5e) and the Holocene in the Lofoten Basin of the Norwegian Sea were revealed. The local thermal optimum of the last interglacial was shifted to the second half of substage 5e ~124–115 thousand years ago and consisted of two short intervals separated by strong cooling ~122–120 thousand years ago. In the Early-Middle Holocene ~10–3 thousand years ago, a long stable climate optimum was noted for main identified parameters, and a short paleotemperature minimum occurred in the Late Holocene ~3–2 thousand years ago during the regional Neoglacial cooling.
About the authors
А. Matul
Shirshov Institute of Oceanology of Russian Academy of Sciences
Author for correspondence.
Email: amatul@mail.ru
Russian Federation, Moscow
Е. Novichkova
Shirshov Institute of Oceanology of Russian Academy of Sciences
Email: amatul@mail.ru
Russian Federation, Moscow
М. Chekhovskaya
Shirshov Institute of Oceanology of Russian Academy of Sciences
Email: amatul@mail.ru
Russian Federation, Moscow
L. Lozinskaia
Shirshov Institute of Oceanology of Russian Academy of Sciences
Email: amatul@mail.ru
Russian Federation, Moscow
P. Behera
National Centre of Polar and Ocean Research; University of Leicester
Email: amatul@mail.ru
School of Geography, Geology and the Environment
India, Vasco da Gama, Goa; Leicester, United KingdomМ. Tiwari
National Centre of Polar and Ocean Research
Email: amatul@mail.ru
India, Vasco da Gama, Goa
R. Мohan
National Centre of Polar and Ocean Research
Email: amatul@mail.ru
India, Vasco da Gama, Goa
М. Кravchishina
Shirshov Institute of Oceanology of Russian Academy of Sciences
Email: amatul@mail.ru
Russian Federation, Moscow
References
- Клювиткина Т.С., Новичкова Е.А., Матуль А.Г., Кравчишина М.Д. Природная среда Норвежского моря в голоцене по данным анализа ископаемых микроводорослей // Докл. РАН. Науки о Земле. 2023. Т. 513. № 2. С. 89–94. https://doi.org/10.31857/S2686739723601631
- Новичкова Е.А., Демина Л.Л., Стародымова Д.П. и др. Средне-позднечетвертичная стратиграфия и палеосреда осадконакопления Норвежского моря на основе комплекса данных по палеомаркерам // Докл. РАН. Науки о Земле. 2024. (в печати).
- Bauch H.A., Erlenkeuser H. A “critical” climatic evaluation of last interglacial (MIS5e) records from the Norwegian Sea // Polar Research. 2008. V. 27. P. 135–151. https://doi.org/10.1111/j.1751-8369.2008.00059.x
- Bauch H.A., Struck U., Thiede J. Planktic and Benthic Foraminifera as Indicators of Past Ocean Changes in Surface and Deep Waters of the Nordic Seas // The Northern North Atlantic / P. Schäfer, W. Ritzrau, M. Schlüter, J. Thiede (Eds.). Berlin, Heidelberg: Springer, 2001. P. 411–421. https://doi.org/10.1007/978-3-642-56876-3_22
- Baumann K.-H., Lackschewitz K.S., Mangerud J. et al. Reflection of Scandinavian Ice Sheet Fluctuations in Norwegian Sea Sediments during the Past 150,000 Years // Quaternary Research. 1995. V. 43(2). P. 185–197. https://doi.org/10.1006/qres.1995.1019
- Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. V. 6(3). P. 457–474. https://doi.org/10.1214/11-BA618
- Blindheim J. Arctic intermediate water in the Norwegian sea // Deep Sea Research Part A. 1990. V. 37. Is. 9. P. 1475–1489. https://doi.org/10.1016/0198-0149(90)90138-L
- Blindheim J., Østerhus S. The Nordic Seas, main oceanographic features // The Nordic Seas: An Integrated Perspective / H. Drange, T. Dokken, T. Furevik et al. (Eds.). AGU Geophysical Monograph 158. Washington, DC: American Geophysical Union (AGU), 2005. P. 11–38. https://doi.org/10.1029/158GM03
- Cheddadi R., Mamakowa K., Guiot J. et al. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records // Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. V. 143. P. 73–85. https://doi.org/10.1016/S0031-0182(98)000-67-4
- Ezat M.M., Rasmussen T.L., Skinner L.C., Zamelczyk K. Deep ocean 14C ventilation age reconstructions from the Arctic Mediterranean reassessed // Earth and Planetary Science Letters. 2019. V. 518. P. 67–75. https://doi.org/10.1016/j.epsl.2019.04.027
- Govin A., Braconnot P., Capron E. et al. Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial // Climate of the Past. 2012. V. 8. P. 483–507. https://doi.org/10.5194/cp-8-483-2012
- Hald M., Andersson C., Ebbesen H. et al. Variations in temperature and extent of Atlantic water in the northern North Atlantic during the Holocene // Quaternary Science Reviews. 2007. V. 26. P. 3423–3440. http://dx.doi.org/10.1016/j.quascirev.2007.10.005
- Jansen E., Andersson C., Moros M. et al. The Early to Mid-Holocene Thermal Optimum in the North Atlantic // Natural Climate Variability and Global Warming / R.W. Battarbee, H.A. Binney (Eds.). Oxford, UK: Blackwell Publishing Ltd., 2008. P. 123–137. https://doi.org/10.1002/9781444300932.ch5
- Johnsen S.J., Clausen H.B., Dansgaard W. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability // Journal of Geophysical Research. 1997. V. 102. P. 26397–26410. https://doi.org/10.1029/97JC00167
- Kellogg T.B., Duplessy J.-C., Shackleton N.J. Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian Sea deep-sea cores // Boreas. 1978. V. 7(1). P. 61–73. https://doi.org/10.1111/j.1502-3885.1978.tb00051.x
- Kukla G.J., Bender M.L., de Beaulieu J.-L. et al. Last Interglacial Climates // Quaternary Research. 2002. V. 58(1). P. 2–13. https://doi.org/10/1016/qres.2001.2316
- Langner M., Mulitza S. Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data // Climate of the Past. 2019. V. 15(6). P. 2067–2072. https://doi.org/10.5194/cp-15-2067-2019
- Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records // Paleoceanography. 2005. V. 20. PA1003. https://doi.org/10.1029/2004PA001071
- Locarnini R.A., Mishonov A.V., Baranova O.K. et al. World Ocean Atlas 2018, V. 1: Temperature. NOAA Atlas NESDIS 81, 2018. 52 pp. https://www.ncei.noaa.gov/products/world-ocean-atlas.
- Martinson D.G., Pisias N.G., Hays J.D. et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy // Quaternary Research. 1987. V. 27. P. 1–30. https://doi.org/10.1016/0033–5894(87)90046-9
- Matul A., Barash M.S., Khusid T.A. et al. Paleoenvironment Variability during Termination I at the Reykjanes Ridge, North Atlantic // Geosciences. 2018. V. 8. № 10. Art. 375. https://doi.org/10.3390/geosciences8100375
- Naughton F., Sánchez-Goñi M.F., Landais A. et al. Chapter 6 – The Bølling–Allerød Interstadial // European Glacial Landscapes / D. Palacios, P.D. Hughes, J.M. García-Ruiz, N. Andrés (Eds.). Amsterdam, Netherlands: Elsevier BV, 2023. P. 45–50. https://doi.org/10.1016/B978-0-323-91899-2.00015-2
- Oppo D.W., McManus J.F., Cullen J.L. Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic // Quaternary Science Reviews. 2006. V. 25. Is. 23–24. P. 3268–3277. https://doi.org/10.1016/j.quascirev.2006.07.006
- Orvik K.A., Niiler P. Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas towards Arctic // Geophysical Research Letters. 2002. V. 29. 1896. https://doi.org/10.1029/2002GL015002
- Reimer P., Austin W., Bard E. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP) // Radiocarbon. 2020. V. 62(4). P. 725–757. https://doi.org/10.1017/RDC.2020.41
- Ruddiman W.F., McIntyre A. Northeast Atlantic paleoclimatic changes over the past 600,000 years // Geological Society of America Memoirs. 1976. V. 145. P. 111–146.
- Schlitzer R. Ocean Data View. 2021. odv.awi.de (accessed on 21 May 2024).
- Skinner L.C., Muschitiello F., Scrivner A.E. Marine Reservoir Age Variability Over the Last Deglaciation: Implications for Marine Carbon Cycling and Prospects for Regional Radiocarbon Calibrations // Paleoceanography and Paleoclimatology. 2019. V. 34. P. 1807–1815. https://doi.org/10.1029/2019PA003667
- Stuiver M., Reimer P.J. Extended 14C Data Base and Revised CALIB 3.0 14C Age Program // Radiocarbon. 1993. V. 35. P. 215–230.
- Swift J. The Arctic waters // The Nordic Seas / B. Hurdle (Ed.). New York, NY, USA: Springer, 1986. P. 129–151.
- Vogelsang E. Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff- und Sauerstoffisotope // Berichte aus dem Sonderforschungsbereich 313, Christian-Albrechts-Universität, Kiel. 1990. V. 23. 136 p. https://doi.org/10.2312/reports-sfb313.1990.23
- Wang W., Zhao M., Yang J. et al. The marine environmental evolution in the northern Norwegian Sea revealed by foraminifera during the last 60 ka // Advances in Polar Science. 2021. V. 32(3). P. 210–220. https://doi.org/10.13679/j.advps.2021.0020
- Zhuravleva A., Bauch H.A., Spielhagen R.F. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial // Global and Planetary Change. 2017. V. 157. P. 232–243. https://doi.org/10.1016/j.gloplacha.2017.09.005
Supplementary files
