Decadal oscillations of the Northern Hemisphere average temperature within current global warming
- Authors: Vakulenko N.V.1, Serykh I.V.1, Sonechkin D.M.1
-
Affiliations:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Issue: Vol 65, No 1 (2025)
- Pages: 5-22
- Section: Физика моря
- URL: https://journal-vniispk.ru/0030-1574/article/view/296250
- DOI: https://doi.org/10.31857/S0030157425010015
- EDN: https://elibrary.ru/DRLMLS
- ID: 296250
Cite item
Abstract
The average temperatures of the Northern Hemisphere for surface air, the lower troposphere and the upper layer of the ocean from 0 to 100 meters are considered. It turned out that all these time-series are similar to each other in that they consist of two components: a warming trend and fluctuations on an approximately ten-year scale superimposed on this trend. It is hypothesized that this quasi-decadal temperature variability is associated with the El Niño–Southern Oscillation. After removing trends from the series under study, their autocorrelation functions demonstrate an exponential decrease and subsequent fluctuations near zero with shifts of approximately 5 years or more, which theoretically makes it possible to predict their changes with a lead-time of 1–4 years. An analysis of the results of the “Historical” experiment of 58 CMIP6 models confirmed the conclusions drawn and showed that the quasi-decadal variability of the average surface air temperature of the Northern Hemisphere is significantly influenced by large volcanic eruptions. Results from the “piControl” experiment of 50 CMIP6 models demonstrated the ability to predict changes in average Northern Hemisphere temperatures several years into the future based on natural interannual climate variability, the main component of which is the El Niño–Southern Oscillation.
About the authors
N. V. Vakulenko
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: iserykh@ocean.ru
Russian Federation, Moscow
I. V. Serykh
Shirshov Institute of Oceanology, Russian Academy of Sciences
Author for correspondence.
Email: iserykh@ocean.ru
Russian Federation, Moscow
D. M. Sonechkin
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: iserykh@ocean.ru
Russian Federation, Moscow
References
- Арушанов М.Л. Причины изменения климата Земли как результат космического воздействия, развеивающее миф об антропогенном глобальном потеплении // German International J. Modern Sci. 2023. № 53. С. 4–14. https://doi.org/ 10.5281/zenodo.7795979
- Бышев В.И., Нейман В.Г., Романов Ю.А. и др. О статистической значимости и климатической роли Глобальной атмосферной осцилляции // Океанология. 2016. Т. 56. № 2. С. 179–185. https://doi.org/10.7868/S0030157416020039
- Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.М. Особенности календаря ледниковых циклов позднего плейстоцена // Изв. РАН. Физика атмосферы и океана. 2007. Т. 43. № 6. С. 773–782.
- Вакуленко Н.В., Нигматулин Р.И., Сонечкин Д.М. К вопросу о глобальном изменении климата // Метеорология и гидрология. 2015. № 9. С. 89–97.
- Вакуленко Н.В., Сонечкин Д.М. Свидетельство скорого окончания современного межледниковья // Докл. АН. 2013. Т. 452. № 1. С. 92–95. https://doi.org/10.7868/S0869565213260198
- Володин Е.М. О механизме колебания климата в Арктике с периодом около 15 лет по данным модели климата ИВМ РАН // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 2. С. 139–149. https://doi.org/10.31857/S0002351520020145
- Логинов В.Ф. Космические факторы климатических изменений // ГНУ “Институт природопользования НАН Беларуси”. Минск: 2020. 168 с.
- Нигматулин Р.И., Вакуленко Н.В., Сонечкин Д.М. Глобальное потепление в реальности и в климатических моделях // Турбулентность, динамика атмосферы и климата. Труды междунар. конф. памяти А.М. Обухова. 13–16 мая 2013 / Ред. Голицын Г.С. и др., М.: ГЕОС, 2014. С. 255–263.
- Полонский А.Б. Изменения климата: мифы и реальность // Министерство науки и высшего образования РФ РАН. Севастополь: Институт природно-технических систем, 2020. 229 c. https://doi.org/10.33075/978-5-6044196-5-6
- Семенов В.А. Колебания современного климата, вызванные обратными связями в системе атмосфера – арктические льды – океан // Фундаментальная и прикладная климатология. 2015. Т. 1. С. 232–248.
- Семенов В.А. Современные исследования климата Арктики: прогресс, смена концепций, актуальные задачи // Изв. РАН. Физика атмосферы и океана. 2021. Т. 57. № 1. С. 21–33. https://doi.org/10.31857/S0002351521010119
- Сонечкин Д.М., Даценко Н.М., Иващенко Н.Н. Оценка тренда глобального потепления с помощью вейвлетного анализа // Изв. РАН. Физика атмосферы и океана. 1997. Т. 33. № 2. С. 184–194.
- Шерстюков Б.Г. Асинхронные связи колебаний климата атмосферы и океана с солнечной активностью // Геомагнетизм и аэрономия. 2022. Т. 62. № 5. С. 671–680. https://doi.org/10.31857/S0016794022050121
- Шерстюков Б.Г. Глобальное потепление и его возможные причины // Гидрометеорология и экология. 2023. № 70. С. 7–37. https://doi.org/10.33933/2713-3001-2023-70-7-37
- Bast J.L. Seven Theories of Climate Change // SPPI Reprint Series. Chicago: The Heartland Institute, 2010. 29 p.
- Enfield D.B., Mestas-Nuñez A.M. Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric // J. Climate. 1999. V. 12. P. 2719–2733. https://doi.org/10.1175/1520-0442(1999)012<2719: MVIGSS>2.0.CO;2
- Eyring V., Bony S., Meehl G.A. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geosci. Model Dev. 2016. V. 9. P. 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- Gregory J.M., Andrews T., Ceppi P. et al. How accurately can the climate sensitivity to CO2 be estimated from historical climate change? // Clim. Dyn. 2020. V. 54. P. 129–157. https://doi.org/10.1007/s00382-019-04991-y
- Gregory J.M., Andrews T., Good P. et al. Small global-mean cooling due to volcanic radiative forcing // Clim. Dyn. 2016. V. 47. P. 3979–3991. https://doi.org/10.1007/s00382-016-3055-1
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, et al. (eds.). Cambridge Univ. Press. 2013. 1535 p.
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Masson-Delmotte et al. (eds.) Cambridge Univ. Press. 2021. In press. https://doi.org/10.1017/9781009157896
- Kalicinsky C., Koppmann R. Multi-decadal oscillations of surface temperatures and the impact on temperature increases. // Sci. Rep. 2022. V. 12. 19895. https://doi.org/10.1038/s41598-022-24448-3
- Latif M. Chapter 25 – The Ocean's role in modeling and predicting decadal climate variations // International Geophysics. 2013. V. 103. P. 645–665. https://doi.org/10.1016/B978-0-12-391851-2.00025-8
- Locarnini R.A., Mishonov A.V, Baranova O.K. et al. World Ocean Atlas 2018, V. 1: Temperature // A. Mishonov Technical Ed.; NOAA Atlas NESDIS81. 2018. 52 p.
- Mazza D., Canuto E. Evidence of solar 11-year cycle from Sea Surface Temperature (SST) // Academia Letters. 2021. 3023. https://doi.org/10.20935/AL3023.
- Mears C.A., Wentz F.J. A satellite-derived lower tropospheric atmospheric temperature dataset using an optimized adjustment for diurnal effects // J. Clim. 2017. V. 30. № 19. P. 7695–7718. https://doi.org/10.1175/jcli-d-16–0768.1
- Meehl G.A., Goddard L., Murphy J. Decadal prediction: Can it be skillful? // Bull. Am. Meteorol. Soc. 2009. V. 90. № 10. Р. 1467–1485. https://doi.org/10.1175/2009BAMS2778.1
- Morice C.P., Kennedy J.J., Rayner N.A. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset // J. Geophys. Res.: Atmospheres. 2020. https://doi.org/10.1029/2019JD032361
- Nnamchi H.C., Farneti R., Keenlyside N.S. et al. Pan-Atlantic decadal climate oscillation linked to ocean circulation // Commun. Earth Environ. 2023. V. 4(121). https://doi.org/10.1038/s43247-023-00781-x
- Ogurtsov M. Decadal and bi-decadal periodicities in temperature of Southern Scandinavia: Manifestations of natural variability or climatic response to solar cycles? // Atmosphere. 2021. V. 12. P. 676. https://doi.org/10.3390/atmos12060676
- Scafetta N. Empirical analysis of the solar contribution to global mean air surface temperature change // J. Atmos. Sol. Terr. Phys. 2009. V. 71. P. 1916–1923. https://doi.org/10.1016/j.jastp.2009.07.007
- Scafetta. N. Climate change and its causes: A discussion about some key issues // La Chimica e l’Industria 1. 2010. P. 70–75.
- Serykh I.V., Sonechkin D.M. Nonchaotic and globally synchronized short-term climatic variations and their origin // Theoretical and Applied Climatology. 2019. V. 137. № 3–4. P. 2639–2656. https://doi.org/10.1007/s00704-018-02761-0
- Serykh I.V., Sonechkin D.M. El Niño forecasting based on the global atmospheric oscillation // Int. J. Climatol. 2021. V. 41. P. 3781–3792. https://doi.org/10.1002/joc.6488
- Serykh I.V., Sonechkin D.M. Global El Niño–Southern Oscillation Teleconnections in CMIP6 Models // Atmosphere. 2024. V. 15 № 4 (500). Р. 500. https://doi.org/10.3390/atmos15040500
- Tyrrell N.L., Dommenget D., Frauen C. et al. The influence of global sea surface temperature variability on the large-scale land surface temperature // Clim. Dyn. 2015. V. 44. P. 2159–2176. https://doi.org/10.1007/s00382-014-2332-0
- Welch P.D. The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms // IEEE Transactions on Audio and Electroacoustics. 1967. AU-15 (2). P. 70–73.
- Zhoua W., Li J., Yan Z. Progress and future prospects of decadal prediction and data assimilation: A review // Atmospheric and Oceanic Sci. Lett. 2024. V. 17 (100441). https://doi.org/10.1016/j.aosl.2023.100441
Supplementary files
