Major tsunamis in the Sea of Japan based on instrumental observations
- 作者: Tsukanova E.S.1, Rabinovich A.B.1, Medvedev I.P.1, Medvedev I.P.1, Medvedeva A.Y.1
-
隶属关系:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- 期: 卷 65, 编号 1 (2025)
- 页面: 46-62
- 栏目: Физика моря
- URL: https://journal-vniispk.ru/0030-1574/article/view/296257
- DOI: https://doi.org/10.31857/S0030157425010048
- EDN: https://elibrary.ru/DQHGHJ
- ID: 296257
如何引用文章
详细
The Sea of Japan is a seismically active zone that is under high risk from tsunami waves. The destructive tsunamis that occur in this region can cause severe damage and loss of life. An overview of the most important tsunami events observed in this region in 20–21 centuries is presented. Eight events in the Sea of Japan were selected for consideration, including one volcanogenic tsunami: 1940 (Mw 7.5), 1964 (Mw 7.5–7.7), 1971 (Mw 7.3), 1983 (Mw 7.7–7.8), 1993 (Mw 7.7), 2007 (Mw 6.2), 2011 (Mw 9.0–9.1) and 2022 (volcanogenic). Particular attention was paid to the tsunamis of 1983 and 1993. Numerical simulations of the tsunami waves arising from these two events were compared to the corresponding waveforms derived from actual tide gauge records. Of the eight tsunami events examined, the 2011 Tohoku and 2022 Tonga events had external sources located outside of the Sea of Japan but generated tsunamis directly within the sea: (1) The 2011 Tohoku earthquake had its source area in the Pacific Ocean east of Japan, but caused a horizontal displacement of the Japanese islands, which, in turn, created tsunami waves westward from these islands; (2) The Hunga–Tonga–Hunga–Ha’apai volcanic eruption in the central Pacific produced strong atmospheric Lamb waves that induced tsunami waves upon arrival in the Sea of Japan.
作者简介
E. Tsukanova
Shirshov Institute of Oceanology, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: tsukanovaelizaveta@gmail.com
俄罗斯联邦, Moscow
A. Rabinovich
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: tsukanovaelizaveta@gmail.com
俄罗斯联邦, Moscow
I. Medvedev
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: tsukanovaelizaveta@gmail.com
俄罗斯联邦, Moscow
I. Medvedev
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: tsukanovaelizaveta@gmail.com
俄罗斯联邦, Moscow
A. Medvedeva
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: tsukanovaelizaveta@gmail.com
俄罗斯联邦, Moscow
参考
- Виктор Андреевич Ярмолюк (к 90-летию со дня рождения) // Тихоокеанская геология. 2005. Т. 24. № 2. С. 111–112.
- Ганзей Л.А., Разжигаева Н.Г., Гребенникова Т.А. и др. Проявление исторических цунами на о. Русский, Японское море // Успехи современного естествознания. 2016. № 5. С. 116–124.
- Го Ч.Н., Иващенко А.И., Симонов К.В., Соловьев С.Л. Проявления Япономорского цунами 26 мая 1983 года на побережье СССР // Накат цунами на берег. Горький: ИПФ АН СССР, 1985. С. 171–180.
- Го Ч.Н., Леонидова Н.И., Леонов Н.Н. Некоторые данные о цунами 1 августа 1940 г. в Японском море // Волны цунами. Южно-Сахалинск: СахКНИИ, 1972. С. 279–283.
- Горбунова Г.В., Диденко Г.В., Дьяченко В.Д. и др. Обследование проявления цунами 12–13 июля 1993 года на побережье Приморского края // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Южно-Сахалинск: ИМГиГ ДВО РАН, 1997. Т. 8. С. 7–28.
- Коновалов А.В., Нагорных Т.В., Сафонов Д.А., Ломтев В.Л. Невельские землетрясения 2 августа 2007 г. и сейсмическая обстановка на юго-западной окраине о. Сахалин // Тихоокеанская геология. 2015. Т. 34. № 6. С. 57–73.
- Куркин А.А., Пелиновский Е.Н., Чой Б.Х., Ли Д.С. Сравнительная оценка цунамиопасности япономорского побережья России на основе численного моделирования // Океанология. 2004. Т. 44. № 2. С. 179–188.
- Медведев И.П., Ивельская Т.Н., Рабинович А.Б. и др. Наблюдение волн цунами на тихоокеанском побережье России, возникших при извержении вулкана Хунга-Тонга-Хунга-Хаапай 15 января 2022 года // Океанология. 2024. Т. 64. № 2. С. 163–180.
- Невельское землетрясение и цунами 2 августа 2007 года, о.Сахалин / под ред. Б.В. Левина и И.Н. Тихонова. М.: Янус-К, 2009. 204 с.
- Нечаев Г.В., Шестаков Н.В. Актуальность использования ГНСС-технологий для целей раннего предупреждения о цунами в Японском море // Проблемы комплексного геофизического мониторинга Дальнего Востока России. 2017. С. 226–230.
- Полякова А.М. Цунами в Приморье 26 мая 1983 года и его последствия // Владивосток: ТОИ ДВНЦ, 1988. 40 с.
- Поплавский А.А., Поплавская Л.Н., Нагорных Т.В. и др. Сейсмотектонические условия возникновения очагов цунами в северной части Японского моря и Окуширское цунамигенное землетрясение 12 июля 1993 года // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. 1997. Т. 8. С. 29–44.
- Святловский А.Е. Цунами. Разрушительные волны, возникающие при подводных землетрясениях в морях и океанах. М.: Изд-во АН СССР, 1957. 55 с.
- Смирнова Д.А., Медведев И.П. Экстремальные колебания уровня Японского моря, вызванные прохождением тайфунов Майсак и Хайшен в сентябре 2020 г. // Океанология. 2023. Т. 63. № 5. С. 718–732. https://doi.org/10.31857/S0030157423050179
- Соловьев С.Л., Го Ч.Н. Каталог цунами на западном побережье Тихого океана. М.: Наука, 1974. 309 с.
- Соловьев С.Л., Милитеев А.Н. Проявление Ниигатского цунами 1964 г. на побережье СССР и некоторые данные об источнике // Проблема цунами. Вопросы образования и распространения морских разрушительных волн от землетрясений и их оперативный прогноз. М.: Наука, 1968. С. 213–231.
- Соловьев С.Л., Ферчев М.Д. Сводка данных о цунами в СССР // Бюлл. Совета сейсмологии АН СССР. 1961. № 9. С. 23–55.
- Шевченко Г.В., Ивельская Т.Н. Цунами и другие опасные морские явления в портах Дальневосточного региона России (по инструментальным измерениям). Южно-Сахалинск: ИМГиГ ДВО РАН, 2013. 44 с.
- Щетников Н.А. Цунами, вызванное Монеронским землетрясением 1971 г. // Изучение цунами в открытом океане. М.: Наука, 1978. С. 137–144.
- Щетников Н.А. Цунами. М.: Наука, 1981. 88 с.
- Abe Ka. Re-examination of the fault model for the Niigata earthquake of 1964 // Journal of Physics of the Earth. 1975. V. 23. № 4. P. 349–366. https://doi.org/10.4294/jpe1952.23.349
- Abe Ka. Quantification of major earthquake tsunamis of the Japan Sea // Physics of the Earth and Planetary Interiors. 1985. V. 38. № 4. P. 214–223. https://doi.org/10.1016/0031-9201(85)90069-X
- Abe Ku, Ishii H. Distribution of maximum water levels due to the Japan Sea tsunami on 26 May 1983 // Journal of the Oceanographical Society of Japan. 1987. V. 43. P. 169–182. https://doi.org/10.1007/BF02109217
- Aida I. A source model of the tsunami accompanying the 1983 Nihonkai-Chubu earthquake // Bulletin of the Earthquake Research Institute, Univ. Tokyo. 1984. V. 59. P. 93–104.
- Aida I. Numerical experiments related to the 1833 Shonai-oki earthquake tsunami / In: Hagiwara T. (ed.) Paleo Earthquakes Continued (Zoku-Kojishin). Tokyo, Univ. Tokyo Press, 1989. P. 204–214.
- Amores A., Monserrat S., Marcos M. et al. Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption // Geophysical Research Letters. 2022. V. 49(6). e2022GL098240. https://doi.org/10.1029/2022GL098240
- Bhattacharya S., Tokimatsu K., Goda K. et al. Collapse of Showa Bridge during 1964 Niigata earthquake: A quantitative reappraisal on the failure mechanisms // Soil Dynamics and Earthquake Engineering. 2014. V. 65. P. 55–71. https://doi.org/10.1016/j.soildyn.2014.05.004
- Chung J.Y., Go C.N., Kaistrenko V.M. Tsunami hazard estimation for eastern Korean coast // Tsunami '93, Proceedings of the IUGG/IOC International Tsunami Symposium, Wakayama, Japan, 23–27 August 1993. 1993. P. 409–422.
- Daicho A., Hagiwara T. The 1833 Shonai-oki earthquake: A new aspect of buried historical documents / Hagiwara T. (ed.) Paleo Earthquakes Continued (Zoku-Kojishin). Tokyo, Univ. Tokyo Press, 1989. P. 165–203.
- Di Giacomo D., Engdahl E.R., Storchak D.A. The ISC-GEM earthquake catalogue (1904–2014): Status after the extension project // Earth System Science Data. 2018. V. 10. № 4. P. 1877–1899. https://doi.org/10.5194/essd-10-1877-2018
- Fine I.V., Kulikov E.A., Cherniawsky J.Y. Japan's 2011 tsunami: Characteristics of wave propagation from observations and numerical modelling // Pure and Applied Geophysics. 2013. V. 170. P. 1295–1307. https://doi.org/10.1007/s00024-012-0555-8
- Fukao Y., Furumoto M. Mechanism of large earthquakes along the eastern margin of the Japan Sea // Tectonophysics. 1975. V. 26. № 3–4. P. 247–266. https://doi.org/10.1016/0040-1951(75)90093-1
- Gusiakov V.K. Global occurrence of large tsunamis and tsunami-like waves within the last 120 years (1900–2019) // Pure and Applied Geophysics. 2020. V. 177. № 3. P. 1261–1266. https://doi.org/10.1007/s00024-020-02437-9
- Gutenberg B., Richter C.F. Frequency of earthquakes in California // Bulletin of the Seismological Society of America. 1944. V. 34. № 4. P. 185–188.
- Hatori T. On the tsunami which accompanied the Niigata earthquake of June 16, 1964. source deformation, propagation and tsunami run-up // Bull. Earthq. Res. Inst., Univ. Tokyo. 1965. V. 43. P. 129–148.
- Hatori T. A study of the wave source of tsunami generated off West Hokkaido on Aug. 2, 1940 // Bulletin of the Earthquake Research Institute, Univ. Tokyo. 1969. V. 47. P. 1063–1072.
- Hatori T. The tsunami associated with an aftershock of the 1983 Nihonkai-Chubu earthquake, and the source mechanism of the main tsunami // Bulletin of the Earthquake Research Institute, Univ. Tokyo. 1984. V. 59. P. 105–113.
- Hatori T. Reexamination of wave behavior of the Hokkaido-Oshima (the Japan Sea) tsunami in 1741 – their comparison with the 1983 Nihonkai-Chubu tsunami // Bulletin of the Earthquake Research Institute, Univ. Tokyo. 1984. V. 59. P. 115–125.
- Hatori T. Magnitudes of the 1833 Yamagata-Oki Earthquake in the Japan Sea and its tsunami // Zisin. 1990. V. 43. P. 227–232.
- Hatori T., Katayama M. Tsunami behavior and source areas of historical tsunamis in the Japan Sea // Bulletin of the Earthquake Research Institute, Univ. Toyo. 1977. V. 52. P. 49–70.
- Heidarzadeh M., Gusman A.R., Ishibe T. et al. Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling // Ocean Engineering. 2022. V. 261. P. 112165. https://doi.org/10.1016/j.oceaneng.2022.112165
- Hibiya T., Kajiura K. Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay // Journal of the Oceanographical Society of Japan. 1982. V. 38. P. 172–182. https://doi.org/10.1007/BF02110288
- Higaki D., Hirota K., Dang K. et al. Landslides and countermeasures in western Japan: historical largest landslide in Unzen and earthquake-induced landslides in Aso, and rain-induced landslides in Hiroshima // In: Progress in Landslide Research and Technology. 2022. V. 1. № 2. Cham: Springer International Publishing, 2023. P. 287–307. https://doi.org/10.1007/978-3-031-18471-0_22
- Iida K. Catalog of tsunamis in Japan and its neighboring countries // Bulletin of Aichi Institute of Technology, Special Rep. 1984. P. 1–52.
- Imamura A. On the Destructive Tango Earthquake of March 7, 1927 // Bulletin of the Earthquake Research Institute, Tokyo Imperial University. 1928. V. 4. P. 179–202.
- Imamura F. Review of tsunami simulation with a finite difference method // In: Long-Wave Runup Models. / Eds. Yeh H. et al. World Scientific Publ., Singapore, 1996. P. 25–42.
- Kaistrenko V.M., Razjigaeva N.G., Ganzey L.A. et al. The manifestation of tsunami of August 1, 1940 in the Kamenka settlement, Primorye (new data concerning the old tsunami) // Geosystems of Transition Zones. 2019. V. 3. № 4. P. 417–422.
- Kajiura K. Tsunami energy in relation to parameters of the earthquake fault model // Bulletin of the Earthquake Research Institute, Univ. Tokyo. 1981. V. 56. P. 415–440.
- Katsui Y., Yamamoto M. The 1741–1742 activity of Oshima-Ōshima Volcano, north Japan // Journal of the Faculty of Science, Hokkaido University. 1981. V. 19. № 4. P. 527–536.
- Kawasumi H. General report on the Niigata Earthquake of 1964. Tokyo, Japan: Electrical Engineering College Press. 1968. 550 p.
- Kim G.B., Cronin S.J., Yoon W.S., Sohn Y.K. Post 19 ka BP eruptive history of Ulleung Island, Korea, inferred from an intra-caldera pyroclastic sequence // Bulletin of Volcanology. 2014. V. 76. P. 1–26. https://doi.org/10.1007/s00445-014-0802-1
- Kim K.O., Kim D.C., Choi B.H. et al. The role of diffraction effects in extreme run-up inundation at Okushiri Island due to 1993 tsunami // Natural Hazards and Earth System Science. 2015. V. 15. № 4. P. 747–755.
- Kubota T., Saito T., Nishida K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption // Science. 2022. V. 377. P. 91–94. https://doi.org/10.1126/science.abo4364
- Kulichkov S.N., Chunchuzov I.P., Popov O.E. et al. Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and tsunami // Pure and Applied Geophysics. 2022. V. 179. P. 1533–1548. https://doi.org/10.1007/s00024-022-03046-4
- Lynett P., McCann M., Zhou Z. et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption // Nature. 2022. V. 609(7928). P. 728–733. https://doi.org/10.1038/s41586-022-05170-6
- Medvedev I.P., Rabinovich A.B., Šepić J. Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020 // Scientific Reports. 2022. V. 12. № 1. P. 1–12. https://doi.org/10.1038/s41598-022-12189-2
- Medvedeva A., Medvedev I., Fine I. et al. Local and trans-oceanic tsunamis in the Bering and Chukchi seas based on numerical modeling // Pure and Applied Geophysics. 2023. V. 180. P. 1639–1659. https://doi.org/10.1007/s00024-023-03251-9
- Monserrat S., Vilibić I., Rabinovich A.B. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band // Natural Hazards and Earth System Sciences. 2006. V. 6. № 6. P. 1035–1051. https://doi.org/10.5194/nhess-6-1035-2006
- Mori N., Takahashi T., Yasuda T., Yanagisawa H. Survey of 2011 Tohoku earthquake tsunami inundation and run‐up // Geophysical Research Letters. 2011. V. 38. L00G14. https://doi.org/10.1029/2011GL049210
- Murotani S., Iwai M., Satake K. et al. Tsunami forerunner of the 2011 Tohoku Earthquake observed in the Sea of Japan // Pure and Applied Geophysics. 2015. V. 172. P. 683–697. https://doi.org/10.1007/s00024-014-1006-5
- Murotani S., Satake K., Ishibe T., Harada T. Reexamination of tsunami source models for the twentieth century earthquakes off Hokkaido and Tohoku along the eastern margin of the Sea of Japan // Earth, Planets and Space. 2022. V. 74. P. 52. https://doi.org/10.1186/s40623-022-01607-4
- National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5PN93H7
- NTL/ICMMG SD RAS. 2024. Novosibirsk Tsunami Laboratory of the Institute of Computational Mathematics and Mathematical Geophysics of Siberian Division of Russian Academy of Sciences. Global Tsunami Database, 2100 BC to Present, https://tsun.sscc.ru/nh/tsunami.php
- Oh I.S., Rabinovich A.B. Manifestation of Hokkaido Southwest (Okushiri) tsunami, 12 July, 1993, at the coast of Korea // Science of Tsunami Hazards. 1994. V. 12. P. 93–116.
- Paris R., Switzer A.D., Belousova M. et al. Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea) // Natural Hazards. 2014. V. 70. P. 447–470. https://doi.org/10.1007/s11069-013-0822-8
- Rabinovich A.B., Candella R.N., Thomson R.E. The open ocean energy decay of three recent trans‐Pacific tsunamis // Geophysical Research Letters. 2013. V. 40. № 12. P. 3157–3162. https://doi.org/10.1002/grl.50625
- Rabinovich A.B., Lobkovsky L.I., Fine I.V. et al. Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007 // Advances in Geosciences. 2008. V. 14. P. 105–116. https://doi.org/10.5194/adgeo-14-105-2008
- Saito T., Ito Y., Inazu D., Hino R. Tsunami source of the 2011 Tohoku‐Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations // Geophysical Research Letters. 2011. V. 38. L00G19. https://doi.org/10.1029/2011GL049089
- Sandanbata O., Satake K., Takemura S. et al. Enigmatic tsunami waves amplified by repetitive source events near Sofugan volcano, Japan // Geophysical Research Letters. 2024. V. 51. № 2. P. e2023GL106949. https://doi.org/10.1029/2023GL106949
- Satake K. The mechanism of the 1983 Japan Sea earthquake as inferred from long-period surface waves and tsunamis // Physics of the Earth and Planetary Interiors. 1985. V. 37. № 4. P. 249–260. https://doi.org/10.1016/0031-9201(85)90012-3
- Satake K. Re-examination of the 1940 Shakotan-oki earthquake and the fault parameters of the earthquakes along the eastern margin of the Japan Sea // Physics of the Earth and Planetary Interiors. 1986. V. 43. № 2. P. 137–147. https://doi.org/10.1016/0031-9201(86)90081-6
- Satake K. Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea // Earth, Planets and Space. 2007. V. 59. P. 381–390. https://doi.org/10.1186/BF03352698
- Satake K., Tanioka Y. Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake // Pure and Applied Geophysics. 1995. V. 144. P. 803–821. https://doi.org/10.1007/BF00874395
- Shuto N. Tsunami caused by the Japan Sea earthquake of 1983 // Disasters. 1983. V. 7. № 4. P. 255–258. https://doi.org/10.1111/j.1467-7717.1983.tb00832.x
- Shuto N., Matsutomi H. Field survey of the 1993 Hokkaido Nansei-Oki earthquake tsunami // Pure and Applied Geophysics. 1995. V. 144. P. 649–663. https://doi.org/10.1007/BF00874388
- Synolakis C.E., Bernard E.N., Titov V.V. et al. Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models // NOAA Technical Memorandum OAR PMEL-135. 2007. P. 1–55.
- Takahashi To, Takahashi Ta, Shuto N. et al. Source models for the 1993 Hokkaido Nansei-Oki earthquake tsunami // Pure and Applied Geophysics. 1995. V. 144. P. 747–767. https://doi.org/10.1007/BF00874393
- Takashimizu Y., Kawakami G., Urabe A. Tsunamis caused by offshore active faults and their deposits // Earth Science Reviews. 2020. V. 211. P. 103380. https://doi.org/10.1016/j.earscirev.2020.103380
- Tang L., Titov V.V., Bernard E.N. et al. Direct energy estimation of the 2011 Japan tsunami using deep‐ocean pressure measurements // Journal of Geophysical Research: Oceans. 2012. V. 117. C08008. https://doi.org/10.1029/2011JC007635
- Titov V.V., Synolakis C.E. Extreme inundation flows during the Hokkaido‐Nansei‐Oki tsunami // Geophysical Research Letters. 1997. V. 24. № 11. P. 1315–1318. https://doi.org/10.1029/97GL01128
- Titov V.V., Synolakis C.E. Numerical modeling of tidal wave runup // Journal of Waterway, Port, Coastal, and Ocean Engineering. 1998. V. 124. № 4. P. 157–171. https://doi.org/10.1061/(ASCE)0733-950X(1998) 124:4(157)
- Tsuji Y., Murakami Y. Inundation height of the 1792 Mayuyama landslide tsunami in the Shimabara Peninsula side // Historical Earthquake. 1997. № 13. P. 135–197.
- Tsukanova E., Medvedev I. The observations of the 2022 Tonga-Hunga tsunami waves in the Sea of Japan // Pure and Applied Geophysics. 2022. V. 179. № 12. P. 4279–4299. https://doi.org/10.1007/s00024-022-03191-w
- Wang R., Parolai S., Ge M. et al. The 2011 Mw 9.0 Tohoku earthquake: Comparison of GPS and strong‐motion data // Bulletin of the Seismological Society of America. 2013. V. 103. № 2B. P. 1336–1347. https://doi.org/10.1785/0120110264
- Zaytsev O., Rabinovich A.B., Thomson R.E. The 2022 Tonga tsunami on the Pacific and Atlantic coasts of the Americas // Journal of Geophysical Research: Oceans. 2024. V. 129, e2024JC020926. https://doi.org/10.1029/2024JC020926
补充文件
